
http://www.wiley.com/buy/9780470247952

 Scripting in SSIS

 With the introduction of C#, and the embedding of the new Visual Studio Tools for Applications
into SSIS, you can ’ t think of using the Script Task and Script Component as scripting anymore;
now it ’ s all - out programming. In the early days of DTS - based SQL Server ETL processing, the
ActiveX Script Task allowed you to embed programmatic logic and became the Swiss - Army knife
of package development. Typically, you ’ d code logic into these Script Tasks to control the
execution and logic flow within a package or to perform some specialized business validation.

 Scripting in SSIS has completely evolved from these simple ActiveX roots. You ’ ve still got a
Swiss - Army knife hidden in here, but there is a separation of functionality from previous uses of
ActiveX scripting into three new concepts: the Scripting Task, the Scripting Component, and
Expressions. Expressions are completely new to SSIS and replace the old methodology of
manipulating variables or properties within the package model. The other two Scripting
Components provide access into a new scripting development environment using Microsoft Visual
Studio Tools for Applications (VSTA). This change finally allows SSIS developers to script logic
into packages using Visual Basic 2008 or Visual C# 2008 .NET code.

 In this chapter, you learn all about these new scripting options and learn how to exploit them in
your package development tasks to control execution flow, perform custom transformations,
manage variables, and provide runtime feedback.

 Scripting?
 If you think of scripting as having to compile at runtime and unstructured or unmanaged coding
languages, then this is not scripting. If you think scripting means small bits of code in specialized
places to execute specific tasks, then yes, it ’ s scripting. The current scripting abilities have come
a long way from their predecessors in DTS, and even the earlier versions of SSIS. Whether you ’ re a
grizzled veteran of DTS, or if SSIS is your first exposure to SQL Server ETL development, it is
helpful to understand the historical landscape of the Scripting Components, and why there is now
a separation by functional usage. We ’ ll examine this and open up the new scripting IDE

c09.indd 293c09.indd 293 8/28/08 12:15:55 PM8/28/08 12:15:55 PM

Chapter 9: Scripting in SSIS

294

environment to walk though the mechanics of applying programmatic logic into these components —
 including how to add your own classes and compiled assemblies.

 The ActiveX Task in the past was useful no doubt, but it was primitive. The task allowed coding in
only the two ActiveX - based scripting languages, VB and J script, with no IntelliSense help. However, if
you look around at historical DTS package development (or if you ’ ve had to convert any to SSIS) you ’ ll
find some significant creative work going on in these tasks. Digging into what developers were doing,
the functional activities can be broken up into these categories:

 Retrieving or setting the value of package variables

 Retrieving or setting properties within the package

 Applying business logic to validate or format data streams

 Controlling workflow in a package

 Performing miscellaneous tasks not supported by existing package components

 Retrieving and setting the value of variables and package properties was so prevalent in DTS that the
SSIS team decided to create a completely different feature to allow this to be less of a programmatic task.
The expressions editor, in SSIS, allows package components to be easily altered by setting component
properties to an expression, or variable that represents an expression. This concept is a maturation and
replacement of the Dynamic Property Component that was a part of DTS development. See Chapter 6
for information on how to use expressions and variables; they are out of scope for this chapter.

 The Data Pump Task in DTS was limited. Delimited data or supported sources could be mapped, but
outside of these narrow constraints, you were on your own. Because of this, you can find DTS packages
that performed all the ETL steps written purely in ActiveX script. In ActiveX Script Tasks, you could
connect to Data Sources via ADO, parse and manipulate the data, and push it into destination sources. In
SSIS, this need was replaced and expanded with the Data Flow Container that allows this type of activity
to be visually represented. However, to perform the ad - hoc data messaging functionality, scripting is still
needed, so the Script Component was added. The primary role of the Scripting Component is to extend
the Data Flow capabilities and allow programmatic data manipulation within the context of the data
stream. However, it can do more as you ’ ll learn later.

 To continue to enable the numerous miscellaneous tasks that are needed in ETL development, the
ActiveX Script Task has been replaced with the Script Task, which can be used only in the Control Flow
design surface. In this task, all the various things that you could do with the ActiveX Task can be
replicated, but within the managed code framework of .NET.

 Today, you ’ ll also still find the ActiveX Script Task in the BIDS environment. However, this is only to
support backward compatibility and even then for only some of the more simple uses. You can get some
of the functionality that used to work in DTS, but not everything converts over. For one, setting package
properties, which was prevalent in DTS development, is no longer allowed in SSIS. If you are currently
using this task, we recommend you get it into one of these new Scripting Components as soon as
possible, since no one knows how long the ActiveX Task will be supported.

 The initial versions of SSIS Script Components stopped half - way down a path of complete replacement
of the older Visual Basic for Applications (VBA) implementation that had previously been used for
scripting to a .NET environment. One downside for many was that only the VB language was supported.

❑

❑

❑

❑

❑

c09.indd 294c09.indd 294 8/28/08 12:15:56 PM8/28/08 12:15:56 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

295

The latest versions of these Script Components host the new Visual Studio Tools for Applications (VSTA)
environment, which is the replacement for the Visual Basic for Applications (VBA) implementation.
VSTA is essentially a scaled - down version of Visual Studio that can be added to an application that
allows coding extensions using managed code and .NET languages. Even though SSIS packages are built
inside of VS, when you are in the context of a Script Task or Component, you are actually coding in the
VSTA environment that is, in fact a mini - project within the package. The new VSTA IDE provides
IntelliSense, full edit - and - continue capabilities, as well as the ability to code in either VB or C#. The IDE
is available when you edit script and looks like Visual Studio. You can now even access some of the .NET
assemblies and even use web references. Earlier versions of SSIS required the creation of a proxy class to
use a Web service.

 Getting Star ted in SSIS Scripting
 The new Script Task and Script Component, combined with the addition of VSTA to the BIDS
environment, has really opened up the possibilities when it comes to script - based ETL development in
SSIS. However, you may find it confusing at first to know when to use which component and what
things can be done in each. Although two have the word “ script ” in the names, they have different
usages, and even coding tasks such as variable retrieval are different in each. You need to know when to
use which component and how to do similar tasks in each. First, to keep them all straight, here ’ s a matrix
to explain when to use each component:

 Component When to Use

 ActiveX Script Task Use only if you are in the middle of converting a DTS package to SSIS. This
component should not be used in new development.

 Script Task Use this task when you need to program logic that either controls package
execution or performs a task of retrieving or setting variables within a
package during runtime.

 Script Component Use this component when pumping data using the Data Flow Task. Here
you can apply programmatic logic to massage data in the pipeline.

 Expressions Use expressions to set task and component properties or variables during
runtime. See Chapter 6 for more detail.

 To get a good look at the scripting model, we ’ ll walk through a TextBox “ Hello World ” coding project in
SSIS. Although this is not a typical example of ETL programming, we ’ ll use this as a start to
understanding the scripting paradigm in SSIS with a basic Script Task. Then we ’ ll look at specific
applications of each Scripting Component.

c09.indd 295c09.indd 295 8/28/08 12:15:57 PM8/28/08 12:15:57 PM

Chapter 9: Scripting in SSIS

296

 Selecting the Scripting Language
 One of the new capabilities of SSIS using the VSTA environment is the addition of the C# scripting
language to the existing VB coding option. To see where you can make this choice, drop a Script Task
onto the Control Flow design surface. Right - click the Script Task and click Edit from the drop - down
menu. The first thing you ’ ll notice is the availability of the Microsoft Visual C# option in the
ScriptLanguage property of the task available in both the Script Task and Component. Figure 9 - 1 shows
these options in the Script Task Editor.

 Figure 9 - 1

 Once you click the Edit Script button, you ’ ll be locked into the script language that you chose and won ’ t
be able to change it without deleting and recreating the Script Task. This is because each Script
Component contains its own internal Visual Studio project in VB or C#. You can create separate Script
Tasks where each one uses a different language within a package. However, having Script Tasks in both
languages is not recommended because this makes maintenance of the package a more complex issue.
The developer maintaining the package would have to be competent in both languages.

c09.indd 296c09.indd 296 8/28/08 12:15:57 PM8/28/08 12:15:57 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

297

Figure 9-2

 Using the VSTA Scripting IDE
 To add programmatic code to a Script Task or Component, access its editor by right - clicking the
component and selecting the Edit option from the drop - down menu. While the Script Task and Script
Component editors look completely different, they both have a common way to access the development
IDE for scripting. In Figure 9 - 2 , notice the same Edit Script button that is in both editors.

 The button labeled Edit Script provides access into the scripting IDE. Once in the IDE, notice that it really
looks and feels just like Visual Studio. Figure 9 - 3 shows an example of how this IDE looks after opening
up the Script Task Component for the C# scripting language.

 The previous Visual Studio 2005 VBA implementation of the scripting IDE presented the coding IDE
like the Macro VBA environment in Excel. If you are still using this older environment, the same look
can be achieved by navigating to the View menu option and selecting the Project Explorer and Property
windows. Arrange them on the right side of the IDE to make the 2005 BIDS scripting IDE look almost
like the new Visual Studio work environment.

c09.indd 297c09.indd 297 8/28/08 12:15:57 PM8/28/08 12:15:57 PM

Chapter 9: Scripting in SSIS

298

Figure 9-3

 The code window on the left side of the IDE contains the code for the item selected in the Project
Explorer on the top - right window. The Project Explorer shows the structure for the project that is being
used within the Scripting Task. A complete .NET project is created for each Script Task or Component,
and is temporarily written to a project file on the local drive where it can be altered in the Visual Studio
IDE. This persistence of the project is the reason that once you pick a scripting language, and generate
code in the project within, you ’ ll be locked into that language for that Scripting Component. Notice in
Figure 9 - 3 that a project has been created with the namespace of ST_d3ff3cb0abd74a759o62ed451f92ef34.
The path to this temporary project can also be seen under the property Full Path for the ScriptMain
class shown in Figure 9 - 2 . However, you can ’ t open up this project directly, nor need you worry about
the project during deployment. These project files are extracted from stored DTS Package metadata
similar to the way the SQL CLR objects are stored as metadata in SQL Server. With the project created
and opened, it is ready for coding.

 Example: Hello World
 In the IDE, the Script Task only contains a class named ScriptMain . If you open a Script Component,
you ’ ll see more classes to support the component and the data buffer. We ’ ll discuss what these additional
classes do a little later in the chapter during the examination of the Script Component. Both components

c09.indd 298c09.indd 298 8/28/08 12:15:58 PM8/28/08 12:15:58 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

299

use a public class named ScriptMain , but the filename you see in the Project Explorer will be either
 ScriptMain or Main to host a public entry - point function. The function name is different for the Script
Task than the Script Component because the interfaces and purposes are different. In the entry - point
functions, Main() for the Script Task, you ’ ll either put all the code you want to execute, or you can call
into separately defined functions or classes either in or out of process. However, if you want to change
the entry - point function for some reason in the Script Task only, type the name of the entry - point
function in the property called EntryPoint on the Script page of the editor. (Alternatively, you could
change the name of the entry point at runtime using an expression.)

 In the VSTA co - generated class ScriptMain , you ’ ll also see a set of assembly references already added
to your project and namespaces set up in the class. Depending upon whether you chose VB or C# as
your scripting language, you ’ ll see either:

C#
Using System
Using System.Data
Using Microsoft.SqlServer.Dts.Runtime.VSTAProxy;
Using System.Windows.Forms;

Or:

VB
Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Runtime.VSTAProxy

 These assemblies are needed to provide base functionality as a jump start to your coding. The remainder
of the class includes VSTA co - generated methods for startup and shutdown operations, and finally the
entry - point Main() function shown here in both languages:

C#
public void Main()
{
 // TODO: Add your code here
 Dts.TaskResult = (int)ScriptResults.Success
}

VB
Public Sub Main()
 ‘
 ‘ Add your code here
 ‘
 Dts.TaskResult = ScriptResults.Success
End Sub

 This Main() function is a good example of one of the differences between the Script Task and the Script
Component. A Script Task must return a result to notify the runtime of whether the script completed
successfully or not. This result is that the Dts.TaskResult property is being set to indicate to the
package that the task completed successfully. The Script Component does not have to do this, since it
runs in the context of a data pump with many rows. There are other differences pertaining to each
component that we ’ ll discuss separately later in the chapter.

c09.indd 299c09.indd 299 8/28/08 12:15:58 PM8/28/08 12:15:58 PM

Chapter 9: Scripting in SSIS

300

 To get a message box to pop up with the phrase “ Hello, World! ” you need access to a class called
 MessageBox in a namespace called System.Windows.Forms . This namespace can either be called
directly by the complete name, or the namespace can be added after the Microsoft.SqlServer.Dts
.Runtime namespace to shorten the coding required in the class. Both of these methods are shown in the
following code to insert the MessageBox code into the Main() function:

C#
using System.Windows.Forms
. . .
MessageBox.Show(“Hello World!”);
Or
System.Windows.Forms.MessageBox.Show(“Hello World!”);

VB
Imports System.Windows.Forms
. . .
MessageBox.Show(“Hello World!”)
Or
System.Windows.Forms.MessageBox.Show(“Hello World!”)

 After you have added this code, get in the habit now of building the project when you are finished with
the coding. The Build option is directly on the menu when you are coding. Previous versions of SSIS
gave you the opportunity to run in precompile or compiled modes. SSIS now will automatically compile
your code prior to executing the package in the runtime. Compiling gives you an opportunity to see
what the errors are before the package finds them. Once the build is successful, close the IDE, the editor,
and right - click and execute the Script Task. A pop - up message box should appear with the words “ Hello
World! ” like Figure 9 - 4 .

Figure 9-4

 Adding Code and Classes
 Using modal message boxes is obviously not the type of typical coding we want to do in production SSIS
package development. Message boxes are synchronous and block until a click event is received, so they
can stop a production job dead in its tracks. However, this is a basic technique to demonstrate the
capabilities in the new scripting environments before getting into some of the details of passing values in
and out using variables. We also don ’ t want to always put the main blocks of code in the Main()
function. With just a little more work, we can get some code reuse from previously written code using
some cut - and - paste development techniques. At the very least, code can be structured in a less -
 procedural way. Consider a common task of generating a unique filename to give an archived file.

c09.indd 300c09.indd 300 8/28/08 12:15:58 PM8/28/08 12:15:58 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

301

Typically, the filename might be generated by appending a prefix and an extension to something variable
like a datetime value.

 These functions can be added within the ScriptMain class bodies to look like this:

C#
Public partial class ScriptMain
{
 . . .
 public void Main()
 {
 System.Windows.Forms.MessageBox.Show(GetFileName(“bankfile”, “txt”));
 Dts.TaskResult = (int)ScriptResults.Success;
 }

 public string GetFileName(string Prefix, string Extension)
 {
 return Prefix + DateTime.Now.ToString(“yyyyMMddhhmmss”) +
 “.” + Extension;
 }
}

VB
Partial Class ScriptMain
 . . .
 Public Sub Main()
 System.Windows.Forms.MessageBox.Show(GetFileName(“bankfile”, “txt”))
 Dts.TaskResult = ScriptResults.Success
 End Sub

 Public Function GetFileName(ByVal Prefix As String, _
 ByVal Extension As String) As String
 GetFileName = Prefix + DateTime.Now.ToString(“yyyyMMddhhmmss”) + _
 “.” + Extension
 End Function
End Class

 Instead of all the code residing in the Main() function, we can separate and organize SSIS scripting
using structured programming techniques. In this example, the GetFileName function builds the
filename and then returns the value in the message box, as shown in Figure 9 - 5 .

Figure 9-5

c09.indd 301c09.indd 301 8/28/08 12:15:59 PM8/28/08 12:15:59 PM

Chapter 9: Scripting in SSIS

302

 But copying code and pasting it into multiple Script Components is pretty cheesy. If you have
preexisting compiled code, shouldn ’ t you be able to reuse this code without finding the original source
for the copy - and - paste operation? You can, with some qualification.

 Using Managed Assemblies
 The capability to reuse code written in other languages is the hallmark of COM and its successor, .NET.
While you can only write SSIS scripts using Visual Basic.NET and C#, you can reuse assemblies that are part
of the .NET core assemblies or any assembly created using a .NET - compliant language, including C#, J#, and
even Delphi, but there are some qualifications. These are rather important so we ’ ll state them like this:

 For a managed assembly to be used in an Integration Service, you must install the assembly in
the Global Assembly Cache (GAC).

 Additionally, all dependent or referenced assemblies must also be registered in the GAC. This
implies that the assembly must be strongly named.

 For development purposes only, VSTA can use managed assemblies anywhere on the local
machine.

 If you think about this it makes sense, but within SSIS, it might seem confusing at first. On one hand, a
sub - project is created for the Script Component, but it is absorbed into the metadata of the package. In
this case, you don ’ t have to worry about deployment of individual script projects. However, when you
use an external assembly, it does not get absorbed into the package metadata and here you do have to
worry about deployment of the assembly. So where do you deploy the assembly you want to use? Since
DTS packages can be deployed within SQL Server, the most universal place to find the assembly would
be in the GAC.

 If you are using any of the standard .NET assemblies, they are already loaded and stored in the GAC and
the .NET Framework folders. As long as you are using the same framework for your development and
production locations, using standard .NET assemblies requires no additional work. To use a standard
.NET assembly in your script, you must reference it. To add a reference to a scripting project, you must
be in the VSTA environment for editing your script code — not the SSIS package itself. Right - click the
References Node in the Project Explorer, or go to the Project menu and select the Add Reference option.
The standard .NET Add Reference window will appear as shown in Figure 9 - 6 .

❑

❑

❑

Figure 9-6

c09.indd 302c09.indd 302 8/28/08 12:15:59 PM8/28/08 12:15:59 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

303

 Select the assemblies from the list that you wish to reference and click the OK button to add the
references to your project. Now you can use any objects located in the referenced assemblies by either
directly referencing the full assembly or by adding the namespaces to your ScriptMain classes for
shorter references. References can also be removed by right - clicking the reference in the References Node
of the Project Explorer. (The References Node is hidden in the VB project. Click the menu option
Project Show All Files to make this node visible.) Expand the References Node to see all the references
in your project. Right - click a reference and select the Remove option to remove it from the project.

 Example: Using Custom .NET Assemblies
 Although using standard .NET assemblies is interesting, being able to use already compiled .NET
assemblies really opens up the capabilities of your SSIS development. Using code already developed and
compiled means not having to copy - and - paste into each Script Task or Component and allows you to
reuse code already developed and tested. To show an example of how this works, you ’ ll create an external
custom .NET library that can validate a postal code and see how to integrate this simple validator into a
Script Task. (To do this, you ’ ll need the standard class library templates that are part of Visual Studio.
If you only installed BIDS, these templates are not installed by default.) You can also download the
precompiled versions of these classes as well as any code from this chapter at www.wrox.com .

 To start, open up a standard class library project in the language of your choice, and create a standard
utility class in the project that looks something like this:

C#
using System;
using System.Text.RegularExpressions;
namespace ssistestlib
{
 public static class DataUtilities
 {
 public static bool isValidUSPostalCode(string PostalCode)
 {
 return Regex.IsMatch(PostalCode, “^[0-9]{5}(-[0-9]{4})?$”);
 }
 }
}
VB
Imports System.Text.RegularExpressions

Public Class DataUtilities
 Public Shared Function isValidUSPostalCode
 (ByVal PostalCode As String) As Boolean
 isValidUSPostalCode = Regex.IsMatch(PostalCode,
 “^[0-9]{5}(-[0-9]{4})?$”)
 End Function
End Class

 Since you are creating projects for both languages, the projects (and assemblies) are named
 SSISUtilityLib_VB and SSISUtilityLib_Csharp . Notice the use of static or shared methods. This is
not required, but is useful because you are simulating the development of what could later be a utility
library loaded with many stateless data validation functions. A static or shared method allows the utility
functions to be called without instantiating the class for each evaluation.

c09.indd 303c09.indd 303 8/28/08 12:15:59 PM8/28/08 12:15:59 PM

Chapter 9: Scripting in SSIS

304

 Now sign the assembly by right - clicking the project to access the Properties menu option. In the Signing
tab, there is an option to select Sign the assembly, as shown in Figure 9 - 7 . Click New on the drop - down
and name the assembly to get a strong name key added to the assembly.

Figure 9-7

 In this example, the VB version of the SSISUtilityLib project is being signed. Now, the assembly can
be compiled by clicking the Build option in the Visual Studio menu and the in - process DLL will be built
with a strong name to allow it to be registered in the GAC.

 On the target development machine, go to the command - line prompt from the Visual Studio Tools menu
to register your assembly with a command like this:

C:\Program Files\Microsoft Visual Studio 9.0\VC > gacutil /I
c:\ssis\scripts\SSISUtilityLib_VB\SSISUtilityLib_VB\bin\debug\
SSISUtilityLib_VB.dll

 Note that you may have to run the command line as administrator or have the User Access Control
feature of Vista turned off to register the assembly.

 If you are running on a production machine, you ’ ll also need to copy the assembly into the appropriate
.NET Framework directory so that you can use the assembly in the Visual Studio IDE. Use the
Microsoft .NET Framework 2.0 Configuration wizard task to Manage the Assembly Cache. Select Add an
Assembly to the Assembly Cache to copy an assembly file into the global cache.

c09.indd 304c09.indd 304 8/28/08 12:16:00 PM8/28/08 12:16:00 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

305

 To use the compiled assembly in an SSIS package, open a new SSIS package and add a new Script Task
onto the Control Flow surface. Select the scripting language you wish and click Edit Script. You ’ ll need to
right - click the Project Explorer Node for references and find the reference for SSISUtilityLib_VB.dll
or SSISUtilityLib_CSharp.dll depending upon which one you built. (Remember that you may have
to use the menu option Project Show All Files in the VB projects to see the References Node.) If you ’ ve
registered the assembly in the GAC, you ’ ll be able to find it in the .NET tab. If you are in a development
environment, you can simply browse to the .dll to select.

 Add the namespace into the ScriptMain class. Then add these namespaces to the ScriptMain class:

C#
using SSISUtilityLib_CSharp;

VB
Imports SSISUtilityLib_VB
Imports System.Windows.Forms

 Note that the SSIS C# Script Task in the sample packages that you ’ ll see if you download the chapter
materials from www.wrox.com use the C# version of the utility library. However, this is not required. The
compiled .NET class libraries may be intermixed within the SSIS Script Task or Components regardless
of the scripting language you choose. All that is left is to code a call to the utility function into the
 Main() function like this:

C#
public void Main()
{
 string postalCode = “12345-1111”;
 string msg = string.Format(
 “Validating PostalCode {0}\nResult..{1}”, postalCode,
 DataUtilities.isValidUSPostalCode(postalCode));
 MessageBox.Show(msg);
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim postalCode As String = “12345-1111”
 Dim msg As String = String.Format(“Validating PostalCode {0}” +
 vbCrLf + “Result..{1}”, postalCode,
 DataUtilities.isValidUSPostalCode(postalCode))
 MessageBox.Show(msg)
 Dts.TaskResult = ScriptResults.Success
End Sub

 Compile the Script Task and execute it. The result should be a message box displaying a string to validate
the postal code 12345 - 1111. The postal code format is validated by the DataUtility function
 IsValidUSPostalCode . There was no need to copy the function in the script project. The logic of
validating the format of a U.S. Postal code is stored in the shared DataUtility function and can easily be
used in both Script Tasks and Components with minimal coding and maximum consistency. The only
downside to this is that there is now an external dependency in the SSIS package upon this assembly. If
the assembly changes version numbers, you ’ ll need to open and recompile all the script projects for each
SSIS package using this. Otherwise, you could get an error if you aren ’ t following backward compatibility

c09.indd 305c09.indd 305 8/28/08 12:16:00 PM8/28/08 12:16:00 PM

Chapter 9: Scripting in SSIS

306

guidelines to ensure that existing interfaces are not broken. If you have a set of well - tested business
functions that rarely change, using external assemblies may be a good idea for your SSIS development.

 Using the Script Task
 Now that you ’ ve gotten a good overview of the scripting environment in SSIS, it ’ s time to dig into one of
the Scripting Components and give it a spin. We used the Script Task heavily to demonstrate how the
SSIS scripting environment works with Visual Studio and during the execution of a package. Generally,
anything that you can script in the .NET managed environment that should run once per package or
code loop belongs in the Script Task. Script Tasks are extremely useful and end up being the general -
 purpose utility component similar to the role ActiveX Tasks performed for DTS package development.

 Configuring the Script Task Editor
 Earlier we looked at the Script Task Editor to point out that there are now two selections available for
the scripting language. Let ’ s look at that editor again and go over the other details. Drop a Script Task
on the Control Flow surface and display the editor you see in Figure 9 - 8 .

Figure 9-8

 Here are the four properties on the Script tab that you can use to configure the Script Task:

 ScriptLanguage: This property defines the .NET language that will be used for the script. As
demonstrated earlier, VB and C# are now both supported.

 EntryPoint: This is the name of the class that must contain a public Main() method that will be
called inside your script to begin execution.

❑

❑

c09.indd 306c09.indd 306 8/28/08 12:16:00 PM8/28/08 12:16:00 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

307

 ReadOnlyVariables: This property enumerates a case - sensitive, comma - separated list of SSIS
variables that you will allow explicit rights to be read by the Script Task.

 ReadWriteVariables: This property enumerates a case - sensitive, comma - separated list of SSIS
variables that you are allowing to be read from and written to by the Script Task.

 Missing from the first release of SSIS is a property that allowed the option to precompile script code into
binary code before execution. In the latest version of SSIS, all scripts are precompiled by default. This is
part of the performance improvements made to reduce the overhead of loading the language engine
when running a package.

 The second tab, labeled General, contains the properties for the task name and description. The latest
version of SSIS moves this tab down since it is not accessed as frequently as the Script tab.

 The final page available on the left of this dialog is the Expression tab. The Expression tab provides
access to the properties that can be set using an expression or expression - based variable. See Chapter 6
for how to use expressions and variables. Practically, changing the ScriptLanguage at runtime is not
really possible, nor desired. The most common property manipulated by an expression is the Disable
property that is used to bypass the task.

 Once the script language is set and the script accessed, a project file with a class named ScriptMain and
a default entry point named Main() is created. An example of the Main() function is provided here
without the supporting class:

 C#
 public void Main()
 {
 // TODO: Add your code here
 Dts.TaskResult = (int)ScriptResults.Success;
 }

 VB
 Public Sub Main()
 Dts.TaskResult = ScriptResults.Failure
 End Try

 The code provided automatically includes the statement to set the TaskResult of the Dts object to the
enumerated value for Success. The Script Task itself is a task in the collection of tasks for the package.
Setting the TaskResult property of the task sets the return value for the Script Task and tells the
package whether the end result was a success or failure.

 By now, you ’ ve probably noticed all the references to DTS. What is this object and what can you do with
it? We ’ ll answer this question in the next section, as you peel back the details on the DTS object.

 The Script Task Dts Object
 The Dts object is actually a property on your package that is an instance of the Microsoft.SqlServer
.Dts.Tasks.ScriptTask.ScriptObjectModel . The Dts object provides a window into the package
in which your script executes. While you can ’ t change properties of the DTS as it executes, the Dts object

❑

❑

c09.indd 307c09.indd 307 8/28/08 12:16:01 PM8/28/08 12:16:01 PM

Chapter 9: Scripting in SSIS

308

has seven properties and one method that allow you to interact with the package. The following is an
explanation of these members:

 Connections : A collection of Connection Managers defined in the package. You can use these
connections in your script to retrieve any extra data you may need.

 Events : A collection of events that are defined for the package. You can use this interface to fire
off these predefined events and any custom events.

 ExecutionValue : A read - write property that allows you to specify additional information
about your task ’ s execution using a user - defined object. This can be any information you want.

 TaskResult : This property allows you to return the Success or Failure status of your Script Task
to the package. This is the main way of communicating processing status or Controlling Flow in
your package. This property must be set before exiting your script.

 Transaction: Obtains the transaction associated with the container in which your script is
running.

 VariableDispenser: Gets the VariableDispenser object that you can use to retrieve
variables when using the Script Task .

 Variables : A collection of all the variables that are available to any script. This is used by
default in the Script Component.

 Log: This method allows you to write to any log providers that have been enabled.

 DTS developers are sometimes locked into the fact that the Script Task can no longer alter an executing
package, but in truth, between the additions of the expressions and the Dts object, you can do almost
everything you could want to with the executing package. The method is just different. In the next few
sections, we ’ ll go through some of the more common things that the Active Script Task can be employed
to accomplish.

 Accessing Variables in the Script Task
 Variables and expressions are an important feature of the SSIS roadmap. We aren ’ t talking about
scripting variables, but rather package variables that serve as intermediate communication mediums
between your Script Task and the rest of your package. As discussed in Chapter 6 , variables are used to
drive the runtime changes within a package by allowing properties to infer their values at runtime from
variables, which can be static or defined through the expression language.

 The common method of using variables is to send them into a Script Task as decision-making elements
or to drive downstream decisions by setting the value of the variable in the script based on some
business rules. The VariableDispenser object provides methods for locking variables for read - only or
read - write access and then retrieving them. Initially this was the standard way of accessing variables in
scripts. The reason for the explicit locking mechanism is to allow control in the Script Task to keep two
processes from competing for accessing and changing a variable.

 To retrieve a variable using the VariableDispenser object, you would have to deal with the
implementation details of locking semantics, and write code like the following:

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 308c09.indd 308 8/28/08 12:16:01 PM8/28/08 12:16:01 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

309

C#
Variables vars = null;
String myval = null;
Dts.VariableDispenser.LockForRead(“User::SomeStringVariable”)
Dts.VariableDispenser.GetVariables(ref vars)
Myval = vars[0].Value;
vars.Unlock(); //Needed to unlock the variables
System.Windows.Forms.MessageBox.Show(myval);

VB
Dim vars As Variables
Dim myval As String
Dts.VariableDispenser.LockForRead(“User::SomeStringVariable”)
Dts.VariableDispenser.GetVariables(vars)
myval = vars(0).Value
vars.Unlock() ‘Needed to unlock the variables
MsgBox(myval)

 The downside to this method is that it was easy to forget to unlock the variables in an efficient way and
as a result, a variable could be locked and rendered unavailable downstream in the package.

 However, this type of control is not always required. Sometimes you simply want the variables that you
are using in a Script Task to be locked when you are reading and writing, and not have to worry about
the locking implementation details. Luckily, a much easier abstraction was created to add a Variables
collection on the Dts object, and the ReadOnlyVariables and ReadWriteVariables properties for the
Script Task were introduced. The only constraint is that you have to define upfront which variables
going into the Script Task can be read and not written to, and which ones can be read and writable.

 The ReadOnlyVariables and ReadWriteVariables properties tell the Script Task which variables to
lock and how. The Variables collection in the Dts object then gets populated with these variables. The
code to retrieve a variable then becomes much simpler, and the complexities of locking are abstracted, so
you only have to worry about one line of code to read a variable:

C#
Dts.Variables[“User::SomeStringVariable”].Value;
or
Dts.Variables[0].Value;

VB
Dts.Variables(“User::SomeStringVariable”).Value
Or
Dts.Variables(0).Value

 Using the ordinal position of the variable in the Variables collection is the safest method if you are
unsure of how to name the variable in your script. Just remember that the variables are ordered from the
editor left to right, starting in the ReadOnlyVariables and then down to the ReadWriteVariables ,
also moving left to right. Now, if you choose to use the named variable, you are safer to use the fully
qualified variable name like User::SomeStringVariable . Attempting to read a variable from the
 Variables collection that hasn ’ t been specified in one of the variable properties of the task will throw an
exception. Likewise, attempting to write to a variable not included in the ReadWriteVariables

c09.indd 309c09.indd 309 8/28/08 12:16:01 PM8/28/08 12:16:01 PM

Chapter 9: Scripting in SSIS

310

property also throws an exception. The biggest frustration for new SSIS developers writing VB script is
dealing with this error message:

Error: 0xc0914054 at VB Script Task: Failed to lock variable
“SomestringVariable” for read access with error 0xc0910001 “The variable
cannot be found. This occurs when an attempt is made to retrieve a variable
from the Variables collection on a container during execution of the package,
and the variable is not there. The variable name may have changed or the
variable is not being created.”

 The resolution is simple. Either the variable name listed in the Script Task Editor or the variable name
in the script doesn ’ t match, so one must be changed to match the other. It is more confusing for the VB
developers because this language is not case - sensitive. However, the SSIS variables are case - sensitive,
even within the VB script.

 Although Visual Basic.NET is not case - sensitive, SSIS variables are.

 Another issue that happens occasionally is that more than one variable with the same name can be
created with different scopes. When this happens, you have to make sure you explicitly refer to the
variable by the fully qualified variable name. One of the latest helpful features of SSIS is a pop - up UI
that allows the selection of the variables. Figure 9 - 9 is an example of this UI that allows the selection of
user - defined variables.

Figure 9-9

 The best part is that the Script Task property for the ReadOnlyVariables or ReadWriteVariables is
auto - filled with the fully qualified names: User::DecisionVar1 and User::DecisionVar2 . This
reduces most of the common issues with passing variables into the Script Task. All this information will
now come in handy as we run through an example using the Script Task and variables to control SSIS
package flow.

c09.indd 310c09.indd 310 8/28/08 12:16:02 PM8/28/08 12:16:02 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

311

 Example: Using Script Task Variables to Control Package Flow
 In this example, we ’ ll set up a Script Task that uses two variables to determine which one of two
branches of Control Flow logic should be taken when the package executes. First, create a new SSIS
package and set up these three variables:

 Variable Type Value

 DecisionIntVar Int32 32

 DecisionStrVar String txt

 HappyPathEnum Int32 0

 Then drop three Script Tasks on the Control Flow design surface so that the package looks like Figure 9 - 10 .

Figure 9-10

 What we want to do is feed the two variables (DecisionIntVar and DecisionStrVar) that represent
the number of rows determined to be in a file and the file extension into the Script Task through these
variables. Assume that these values have been set by yet another process. Logic in the Script Task will
determine whether the package should execute the CRD File Path Script Task or the TXT File Script Task.
The control of the package is handled by the other external variable named HappyPathEnum . If the value
of this variable is equal to 1, then the TXT File Script Task will be executed. If the value of the variable is
equal to 2, then the CRD File Path Script Task will be executed. Open up the main Script Task Editor to
set up the properties. It should look like Figure 9 - 11 .

c09.indd 311c09.indd 311 8/28/08 12:16:02 PM8/28/08 12:16:02 PM

Chapter 9: Scripting in SSIS

312

Figure 9-11

 Set the Script Language and then use the ellipsis button to bring up the variable selection UI that we
discussed and demonstrated in Figure 9 - 9 . Select the variables for the ReadOnlyVariables and
ReadWriteVariables separately if you are using the variable selection UI. You can also type these
variables in, but remember that the variable names are case - sensitive. It is noteworthy to stop and point
out the ordinal positions of these variables for this example. You can see the ordinal positions
superimposed onto the editor in Figure 9 - 12 .

10

2

Figure 9-12

 We ’ ll keep this script simple for demonstration purposes. The most important parts are the retrieving and
setting of the variables. This code uses the named references for the variables but the code lines like this:

C#
int rowCnt = (int)Dts.Variables[“User::DecisionIntVar”].Value;

VB
Dim rowCnt As Integer = Dts.Variables(“User::DecisionIntVar”).Value

c09.indd 312c09.indd 312 8/28/08 12:16:02 PM8/28/08 12:16:02 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

313

Could easily be replaced with ordinal - based references like this:

C#
int rowCnt = (int)Dts.Variables[0].Value;

VB
Dim rowCnt As Integer = Dts.Variables(0).Value

 The setting of variables uses the same syntax but reverses the assignment. The code that should be
pasted into the Main() function of the ScriptMain class will evaluate the two variables and set the
 HappyPathEnum variable:

 C#
 //Retrieving the value of Variables
 int rowCnt = (int)Dts.Variables[“User::DecisionIntVar”].Value;
 string fileExt = (string)Dts.Variables[“User::DecisionStrVar”].Value;

 if (fileExt.Equals(“txt”) & & rowCnt > 0)
 {
 Dts.Variables[“User::HappyPathEnum”].Value = 1;
 }
 else if (fileExt.Equals(“crd”) & & rowCnt > 0)
 {
 Dts.Variables[“User::HappyPathEnum”].Value = 2;
 }
 Dts.TaskResult = (int)ScriptResults.Success;

 VB
 ‘Retrieving the value of Variables
 Dim rowCnt As Integer = Dts.Variables(“User::DecisionIntVar”).Value
 Dim fileExt As String = Dts.Variables(“User::DecisionStrVar”).Value

 If (fileExt.Equals(“txt”) And rowCnt > 0) Then
 Dts.Variables(2).Value = 1
 Dts.Variables(“User::HappyPathEnum”).Value = 1
 ElseIf (fileExt.Equals(“crd”) And rowCnt > 0) Then
 Dts.Variables(2).Value = 2
 Dts.Variables(“User::HappyPathEnum”).Value = 2
 End If
 Dts.TaskResult = ScriptResults.Success

 To alter the flow of the package, set the two precedence constraints in the package hierarchy to be based
on a successful completion of the previous Script Task and an Expression that tests the expected values
of the HappyPathEnum variable. This precedence defines that the Control Flow should only go in a
direction if the value of an expression tests true. Set the precedence between each Script Task to one of
these expressions:

@HappyPathEnum == 1
Or
@HappyPathEnum == 2

c09.indd 313c09.indd 313 8/28/08 12:16:03 PM8/28/08 12:16:03 PM

Chapter 9: Scripting in SSIS

314

 A sample of the precedence between the Script Task and the TXT File Script Task should look like
Figure 9 - 13 .

Figure 9-13

 Now, to give the package something to do, simply retrieve the value of the set variable in each child
Script Task to provide visual proof that the HappyPathEnum variable was properly set. Add this code
into the Main() function of each child Script Task (make sure you set the message to display TXT or
CRD for each associated Script Task):

 C#
 int ival = (int)Dts.Variables[0].Value;
 string msg = string.Format(“TXT File Found\nHappyPathEnum Value = {0}”,
 Dts.Variables[0].Value.ToString());

 System.Windows.Forms.MessageBox.Show(msg);
 Dts.TaskResult = (int)ScriptResults.Success;

 VB
 Dim ival As Integer = Dts.Variables(0).Value
 Dim msg As String = _
 String.Format(“TXT File Found” + vbCrLf + “HappyPathEnum Value = {0}”,
 Dts.Variables(0).Value.ToString())

 System.Windows.Forms.MessageBox.Show(msg)
 Dts.TaskResult = ScriptResults.Success

 To see how this works, set the value of the User::DecisionIntVar variable to a positive integer
number value, and the User::DecisionStrVar variable to either txt or crd , and watch the package
switch from one Control Flow to the other. If you provide a value other than txt or crd (even “ txt ”
with quotes will cause this), the package will not run either leg, which is as designed. This is a simple
example that you can refer back to as your packages get more complicated, and you are referring to or

c09.indd 314c09.indd 314 8/28/08 12:16:03 PM8/28/08 12:16:03 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

315

updating variables within the Script Tasks. Later, we ’ ll look at the Script Component that accesses
variables in a slightly different way.

 Connecting to Data Sources in a Script Task
 A common use of an ActiveX Script Task in DTS packages was to grab a connection to various Data
Sources for decision - making data from Excel files, INI files, flat files, or even databases like Oracle or
Access. This capability provided ways to get to other Data Sources for configuring the packages, or to
retrieve or output data for things we didn ’ t have a direct connection object to use. In SSIS, with the
Scripting Task, you can still make connections using any of the .NET libraries directly, or you can use
connections that are defined in a package. Connections in SSIS are abstractions for connection strings that
can be copied, passed around, and configured more easily than the ADO, script - based version in DTS.

 The Connections collection hangs off of the DTS object in the Script Task. To retrieve a connection you
call the AcquireConnection method on a specific named (or ordinal position) connection in the
collection. The only thing you really should know ahead of time is what type of connection you are
going to be retrieving, because you ’ ll need to cast the returned connection to the proper connection type.
In .NET, connections are not generic like the ADO model. Examples of concrete connections are
 SqlConnection , OleDb.Connection , OdbcConnection , and the OracleConnection Managers that
connect using SqlClient, OLE DB, ODBC, and even Oracle data access libraries respectively. There are
some things you can do to query the Connection Manager to determine what is in the connection string
or if it supports transactions, but you shouldn ’ t expect to use one connection in SSIS for everything,
especially with the added Connection Managers for FTP, HTTP, and WMI.

 Assuming that you ’ re up to speed on the different types of connections covered earlier in this book, let ’ s
look at how you can use them in everyday SSIS package tasks.

 Example: Retrieving Data into Variables from a Database
 Although SSIS provides configurable abilities to set package - level values, there are use - cases that require
you to retrieve actionable values from a database that can be used for package Control Flow or other
functional purposes. One example would be some variable aspect of the application that may change,
like an email address for events to use for notification. In this example, you ’ ll retrieve a log file path for a
package at runtime using a connection within a Script Task. The database that contains the settings for
the log file path stores this data using the package ID. You ’ ll first need a table in the
AdventureWorks2008 database called SSIS_SETTING . Create the table with three fields, PACKAGE_ID ,
 SETTING , and VALUE , or use this script:

CREATE TABLE [dbo].[SSIS_SETTING](
 [PACKAGE_ID] [uniqueidentifier] NOT NULL,
 [SETTING] [nvarchar](2080) NOT NULL,
 [VALUE] [nvarchar](2080) NOT NULL
) ON [PRIMARY]
GO
INSERT INTO SSIS_SETTING
SELECT ‘{INSERT YOUR PACKAGE ID HERE}’, ‘LOGFILEPATH’, ‘c:\myLogFile.txt’

 Then create an SSIS package with one ADO.NET Connection Manager to the AdventureWorks database
called local.aw and add a package - level variable named LOGFILEPATH of type String . Add a Script
Task to the project and send in two variables: the ReadOnly System::PackageID and a ReadWrite

c09.indd 315c09.indd 315 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Chapter 9: Scripting in SSIS

316

variable User::LOGFILEPATH . Click the Edit Script button to open the Script project and add the
namespace to System.Data.SqlClient in the top of the class. Then add the following code to the
 Main() method:

C#
public void Main()
{
 string myPackageId = Dts.Variables[“System::PackageID”].Value.ToString();
 string myValue = string.Empty;
 string cmdString = “SELECT VALUE FROM SSIS_SETTING “ +
 “WHERE PACKAGE_ID= @PACKAGEID And SETTING= @SETTINGID”;

 try
 {
 SqlConnection mySqlConn =
 (SqlConnection)Dts.Connections[0].AcquireConnection(null);
 mySqlConn = new SqlConnection(mySqlConn.ConnectionString);
 mySqlConn.Open();
 SqlCommand cmd = new SqlCommand();
 cmd.CommandText = cmdString;
 SqlParameter parm = new SqlParameter(“@PACKAGEID”,
 SqlDbType.UniqueIdentifier);
 parm.Value = new Guid(myPackageId);
 cmd.Parameters.Add(parm);
 parm = new SqlParameter(“@SETTINGID”, SqlDbType.NVarChar);
 parm.Value = “LOGFILEPATH”;
 cmd.Parameters.Add(parm);
 cmd.Connection = mySqlConn;
 cmd.CommandText = cmdString;
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 myValue = reader[“value”].ToString();
 }

 Dts.Variables[“User::LOGFILEPATH”].Value = myValue;

 reader.Close();
 mySqlConn.Close();
 mySqlConn.Dispose();
 }
 catch
 {
 Dts.TaskResult = (int)ScriptResults.Failure;
 throw;
 }

 System.Windows.Forms.MessageBox.Show(myValue);
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim myPackageId As String = _

c09.indd 316c09.indd 316 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

317

 Dts.Variables(“System::PackageID”).Value.ToString()
 Dim myValue As String = String.Empty
 Dim cmdString As String = “SELECT VALUE FROM SSIS_SETTING “ + _
 “WHERE PACKAGE_ID= @PACKAGEID And SETTING= @SETTINGID”
 Try
 Dim mySqlConn As SqlClient.SqlConnection
 mySqlConn = DirectCast(Dts.Connections(0).AcquireConnection(Nothing),
 SqlClient.SqlConnection)
 mySqlConn = New SqlClient.SqlConnection(mySqlConn.ConnectionString)
 mySqlConn.Open()
 Dim cmd = New SqlClient.SqlCommand()
 cmd.CommandText = cmdString
 Dim parm As New SqlClient.SqlParameter(“@PACKAGEID”, _
 SqlDbType.UniqueIdentifier)
 parm.Value = New Guid(myPackageId)
 cmd.Parameters.Add(parm)
 parm = New SqlClient.SqlParameter(“@SETTINGID”, SqlDbType.NVarChar)
 parm.Value = “LOGFILEPATH”
 cmd.Parameters.Add(parm)
 cmd.Connection = mySqlConn
 cmd.CommandText = cmdString
 Dim reader As SqlClient.SqlDataReader = cmd.ExecuteReader()
 Do While (reader.Read())
 myValue = reader(“value”).ToString()
 Loop
 Dts.Variables(“User::LOGFILEPATH”).Value = myValue
 reader.Close()
 mySqlConn.Close()
 mySqlConn.Dispose()
 Catch ex As Exception
 Dts.TaskResult = ScriptResults.Failure
 Throw
 End Try

 System.Windows.Forms.MessageBox.Show(myValue)
 Dts.TaskResult = ScriptResults.Success
End Sub

 In this code, the package ID is passed into the Script Task as a read - only variable and is used to build a
TSQL statement to retrieve the value of the LOGFILEPATH setting from the SSIS_SETTING table. The
 AcquireConnection method creates an instance of a connection to the local AdventureWorks database
managed by the Connection Manager and allows other SqlClient objects to access the Data Source. The
retrieved setting from the SSIS_SETTING table is then stored in the writable variable LOGFILEPATH . This
is a basic example, but you use this exact same technique to retrieve a recordset into an object variable
that can be iterated within your package as well.

 Example: Saving Data to an XML File
 Another common requirement is to generate data of a certain output format. When the output is a
common format like Flat File, Excel, CSV, or other database format, you can simply pump the data
stream into one of the Data Flow Destinations. If you want to save data to an XML file, the structure is
not homogeneous, and not as easy to transform from a column - based data stream into an XML structure
without some logic or structure around it. This is where the Script Task comes in handy.

c09.indd 317c09.indd 317 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Chapter 9: Scripting in SSIS

318

 The easiest way to get data into an XML file is to load and save the contents of a dataset using the
method WriteXML on the dataset. With a new Script Task in a package with an ADO.NET connection
to AdventureWorks2008, add a reference to the System.Xml.dll, then add the namespaces for
System.Data.SqlClient , System.IO , and System.Xml . Then code the following into the Script
Task to open a connection and get all the SSIS_SETTING rows and store as XML.

 See the previous example for the DDL to create this table in the AdventureWorks2008 database.

C#
public void Main()
{
 SqlConnection sqlConn;
 string cmdString = “SELECT * FROM SSIS_SETTING “;
 try
 {
 sqlConn =
(SqlConnection)(Dts.Connections[“local.aw”]).AcquireConnection(Dts.Transaction
);
 sqlConn = new SqlConnection(sqlConn.ConnectionString);
 sqlConn.Open();
 SqlCommand cmd = new SqlCommand(cmdString, sqlConn);
 SqlDataAdapter da = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet();
 da.Fill(ds);
 ds.WriteXml(new
System.IO.StreamWriter(“C:\\SSIS\\scripts\\ScriptDataIntoXMLFile\\
myPackageSettings.xml”));
 sqlConn.Close();
 }
 catch
 {
 Dts.TaskResult = (int)ScriptResults.Failure;
 throw;
 }
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim sqlConn As New SqlConnection
 Dim cmdString As String = “SELECT * FROM SSIS_SETTING “
 Try
 sqlConn =
DirectCast(Dts.Connections(“local.aw”).AcquireConnection(Dts.Transaction),
SqlConnection)
 sqlConn = New SqlConnection(sqlConn.ConnectionString)
 sqlConn.Open()
 Dim cmd = New SqlCommand(cmdString, sqlConn)
 Dim da = New SqlDataAdapter(cmd)
 Dim ds = New DataSet
 da.Fill(ds)
 ds.WriteXml(New
StreamWriter(“C:\\SSIS\\scripts\\ScriptDataIntoXMLFile\\myPackageSettings.xml”
))

c09.indd 318c09.indd 318 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

319

 sqlConn.Close()
 Catch
 Dts.TaskResult = ScriptResults.Failure
 Throw
 End Try
 Dts.TaskResult = ScriptResults.Success
End Sub

 The results are in XML, and there is not much to this file, except that it is in XML format.

 < NewDataSet >
 < Table >
 < PACKAGE_ID > a5cf0c2f-8d85-42eb-91b9-cbd1fd47e5b1 < /PACKAGE_ID >
 < SETTING > LOGFILEPATH < /SETTING >
 < VALUE > C:\SSIS\scripts\ScriptDataIntoVariable\myLogFile.txt < /VALUE >
 < /Table >
 < /NewDataSet >

 If you need more control of the data you are exporting, or you need to serialize data, you ’ ll need to use
the Script Task in a different way. See the next example for some tips on how to do this.

 Example: Serializing Data to XML
 In the last example, you looked at simply dumping a recordset into an XML format by loading data into
a dataset and using the WriteToXML method to dump the XML out to a file stream. If you need more
control over the format or the data is hierarchical, using .NET XML object - based serialization can be
helpful. Imagine implementations that pull data from flat - file mainframe dumps and fill fully
hierarchical object models. Alternatively, imagine serializing data into an object structure to pop an entry
into an MSMQ application queue. This is easy to do using some of the same concepts. Create another
package with a connection to the AdventureWorks2008 database; add a Script Task with a reference to
the System.Data.SqlClient namespace. Use the data from the previous example and create a class
structure within your ScriptMain to hold the values for each row of settings that looks like this:

C#
[Serializable()]
public class SSISSetting
{
 public string PackageId { get; set; }
 public string Setting { get; set; }
 public string Value { get; set; }
}

VB
 < Serializable() > Public Class SSISSetting
 Private m_PackageId As String
 Private m_Setting As String
 Private m_Value As String

 Public Property PackageId() As String
 Get
 PackageId = m_PackageId
 End Get

c09.indd 319c09.indd 319 8/28/08 12:16:05 PM8/28/08 12:16:05 PM

Chapter 9: Scripting in SSIS

320

 Set(ByVal Value As String)
 m_PackageId = Value
 End Set
 End Property
 Public Property Setting() As String
 Get
 PackageId = m_Setting
 End Get
 Set(ByVal Value As String)
 m_Setting = Value
 End Set
 End Property
 Public Property Value() As String
 Get
 Value = m_Value
 End Get
 Set(ByVal Value As String)
 m_Value = Value
 End Set
 End Property
End Class

 This class will be used to fill based on the dataset like we had in the last example. It is still a flat model,
but more complex class structures would have collections within the class. An example would be a
student object with a collection of classes, or an invoice with a collection of line items. To persist this type
of data you ’ ll need to traverse multiple paths to fill the model. Once the model is filled, the rest is easy.
First, add the namespaces System.Xml.Serialization , System.Collections.Generic , System.IO ,
and System.Data.SqlClient into your Script Task project. Then a simple example with the SSIS_
SETTING table would look like this:

C#
public void Main()
{
 SqlConnection sqlConn;
 string cmdString = “SELECT * FROM SSIS_SETTING “;

 try
 {
 sqlConn =
(SqlConnection)(Dts
.Connections[“local.aw”]).AcquireConnection(Dts.Transaction);
 sqlConn = new SqlConnection(sqlConn.ConnectionString);
 sqlConn.Open();
 SqlCommand cmd = new SqlCommand(cmdString, sqlConn);
 SqlDataReader dR = cmd.ExecuteReader();
 List < SSISSetting > arrayListSettings = new List < SSISSetting > ();

 while (dR.Read())
 {
 SSISSetting oSet = new SSISSetting();
 oSet.PackageId = dR[“PACKAGE_ID”].ToString();

c09.indd 320c09.indd 320 8/28/08 12:16:05 PM8/28/08 12:16:05 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

321

 oSet.Setting = dR[“SETTING”].ToString();
 oSet.Value = dR[“VALUE”].ToString();
 arrayListSettings.Add(oSet);
 }

 StreamWriter outfile = new
StreamWriter(“C:\\SSIS\\scripts\\ScriptDataintoSerializableObject\\myObjectXml
Settings.xml”);

 XmlSerializer ser = new XmlSerializer(typeof(List < SSISSetting >));
 ser.Serialize(outfile, arrayListSettings);
 outfile.Close();
 outfile.Dispose();
 sqlConn.Close();
 }
 catch
 {
 Dts.TaskResult = (int)ScriptResults.Failure;
 throw;
 }
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim sqlConn As SqlConnection
 Dim cmdString As String = “SELECT * FROM SSIS_SETTING “

 Try
 sqlConn =
DirectCast(Dts.Connections(“local.aw”).AcquireConnection(Dts.Transaction),
 SqlConnection)
 sqlConn = New SqlConnection(sqlConn.ConnectionString)
 sqlConn.Open()
 Dim cmd As SqlCommand = New SqlCommand(cmdString, sqlConn)
 Dim dR As SqlDataReader = cmd.ExecuteReader()
 Dim arrayListSettings As New List(Of SSISSetting)
 Do While (dR.Read())
 Dim oSet As New SSISSetting()

 oSet.PackageId = dR(“PACKAGE_ID”).ToString()
 oSet.Setting = dR(“PACKAGE_ID”).ToString()
 oSet.Value = dR(“PACKAGE_ID”).ToString()
 arrayListSettings.Add(oSet)
 Loop

 Dim outfile As New
StreamWriter(“C:\\SSIS\\scripts\\ScriptDataintoSerializableObject\\myObjectXml
Settings.xml”)
 Dim ser As New XmlSerializer(GetType(List(Of SSISSetting)))

 ser.Serialize(outfile, arrayListSettings)
 outfile.Close()
 outfile.Dispose()

c09.indd 321c09.indd 321 8/28/08 12:16:05 PM8/28/08 12:16:05 PM

Chapter 9: Scripting in SSIS

322

 sqlConn.Close()
 Catch
 Dts.TaskResult = ScriptResults.Failure
 Throw
 End Try

 Dts.TaskResult = ScriptResults.Success
End Sub

 The StreamWriter here just gets an IO stream from the file system to use for data output. The
 XmlSerializer does the heavy lifting and converts the data from the object format into an XML format.
The only trick here is to understand how to deal with the Generic List or the collection of all the
 SSISSetting objects. This is handled by using the override where you can add the specific types to the
serializer along with the List . The resulting XML payload will now look like this:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < ArrayOfSSISSetting xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < SSISSetting >
 < PackageId > 34050406-2e0f-423a-8af3-1ec95399a6c2 < /PackageId >
 < Setting > 34050406-2e0f-423a-8af3-1ec95399a6c2 < /Setting >
 < Value > 34050406-2e0f-423a-8af3-1ec95399a6c2 < /Value >
 < /SSISSetting >
 < /ArrayOfSSISSetting >

 Although the XML content looks a little bit different than dumping the content of the recordset directly
to XML as we did in the earlier example, it is optimized for object serialization. This is the type of content
that you could push into application queues or share with external applications.

 Raising an Event in a Script Task
 All existing SSIS Tasks and Components raise events that can be captured and displayed by the
Execution Results tab by default. Optionally these events can also be captured and logged into SSIS
logging or event handlers. Event handlers are Control Flows that you set up and define to respond to
specific events. They are literally Control Flow workflows within a package and give you the advantage
of customizing the diagnostic information that the packages can provide at runtime.

 If you have done any Windows GUI programming, you will be familiar with events. An event is simply a
message sent from some object saying that something just happened or is about to happen. To raise or
 fire an event with a Script Task, you use the Events property of the Dts object. The Events property on
the Dts object is really an instance of the IDTSComponentEvents interface. This interface specifies seven
methods for firing events:

 FireBreakpointHit: This method supports the SQL Server infrastructure and is not intended
to be used directly in code.

 FireError: Fires an event when an error occurs.

 FireInformation: Fires an event with information. You can fire this event when you want
some set of information to be logged, possibly for auditing later.

❑

❑

❑

c09.indd 322c09.indd 322 8/28/08 12:16:06 PM8/28/08 12:16:06 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

323

 FireProgress: Fires an event when a certain progress level has been met.

 FireQueryCancel: Fires an event to determine if package execution should stop.

 FireWarning: Fires an event that is less serious than an error, but more than just information.

 FireCustomEvent: Fires a custom defined event.

 In SSIS, any events you fire will be written to all enabled log handlers that are set to log that event.
Logging allows you to see what happened with your script when you ’ re not there to watch it run. This is
useful for troubleshooting and auditing purposes, as you ’ ll see in the following example.

 Example: Raise Some Events
 The default event handler at design time is the Execution Results tab at the top of your package in the
BIDS design environment. The simplest way to use the events is to fire off some sample events and see
them in this Execution Results tab. To do this create a new package with a Script Task and add the
System variable System::TaskName as a Read - Only variable. Then add the following code to the
 Main() function:

C#
public void Main()
{
 string taskName =
 Dts.Variables[“System::TaskName”].Value.ToString();
 bool retVal = false;

 Dts.Events.FireInformation(0, taskName,
 String.Format(“Starting Loop Operation at {0} “,
 DateTime.Now.ToString(“MM/dd/yyyy hh:mm:ss”)), “”, 0,
 ref retVal);

 for(int i=0; i < = 10; i++)
 {
 Dts.Events.FireProgress(String.Format(“Loop in iteration {0}”, i),
 i * 10, 0, 10, taskName, ref retVal);
 }

 Dts.Events.FireInformation(0, taskName,
 String.Format(“Completion Loop Operation at {0} “,
 DateTime.Now.ToString(“mm/dd/yyyy hh:mm:ss”)), “”, 0,
 ref retVal);

 Dts.Events.FireWarning(1, taskName,
 “This is a warning we want to pay attention to...”,
 “”, 0);
 Dts.Events.FireWarning(2, taskName,
 “This is a warning for debugging only...”,

❑

❑

❑

❑

c09.indd 323c09.indd 323 8/28/08 12:16:06 PM8/28/08 12:16:06 PM

Chapter 9: Scripting in SSIS

324

 “”, 0);

 Dts.Events.FireError(0, taskName,
 “If we had an error it would be here”, “”, 0);
}

 VB
Public Sub Main()
 Dim i As Integer = 0
 Dim taskName As String =
 Dts.Variables(“System::TaskName”).Value.ToString()
 Dim retVal As Boolean = False

 Dts.Events.FireInformation(0, taskName, _
 String.Format(“Starting Loop Operation at {0} “, _
 DateTime.Now.ToString(“MM/dd/yyyy hh:mm:ss”)), “”, 0, _
 True)

 For i = 0 To 10
 Dts.Events.FireProgress(_
 String.Format(“Loop in iteration {0}”, i), _
 i * 10, 0, 10, taskName, True)
 Next

 Dts.Events.FireInformation(0, taskName, _
 String.Format(“Completion Loop Operation at {0} “, _
 DateTime.Now.ToString(“mm/dd/yyyy hh:mm:ss”)), “”, 0, False)

 Dts.Events.FireWarning(1, taskName, _
 “This is a warning we want to pay attention to...”, _
 “”, 0)
 Dts.Events.FireWarning(2, taskName, _
 “This is a warning for debugging only...”, _
 “”, 0)

 Dts.Events.FireError(0, taskName, _
 “If we had an error it would be here”, “”, 0)
End Sub

 This code will perform a simple loop operation and demonstrate firing the information, progress,
warning, and error events. If you run the package, you ’ ll be able to view the information embedded in
these fire event statements in the Execution Results tab in Figure 9 - 14 . Note that raising the error event
results in the Script Task failure. You may comment out the FireError event to see the task complete
successfully.

c09.indd 324c09.indd 324 8/28/08 12:16:06 PM8/28/08 12:16:06 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

325

Figure 9-14

 All the statements prefixed with the string [Script Task] were generated using these events fired
from the Script Task. We ’ ll leave it with you to comment out the Dts.Events.FireError method calls
to demonstrate to yourself that the task can complete successfully for warnings and informational
events. Note that with the firing of an error you can also force the task to generate a custom error with an
error code and description. In fact, each of the events has a placeholder as the first parameter to store a
custom information code. Continue to the next example to see how you can create an error handler to
respond to the warning events that are fired from this Script Task.

 Example: Respond to an Event
 If you have already created a package for the Raise Some Events example, navigate to the Event
Handlers tab. Event handlers are separate Control Flows that can be executed in response to an event. In
the Raise Some Events example, you generated two Warning events. One had an information code of one
(1) and the other had the value of two (2). You are going to add an event handler to respond to those
warning events and add some logic to respond to the event if the information code is equal to one (1).
Select the executable of Script Task and select the event handler of OnWarning . Then click the hot link
that states:

Click here to create an ‘OnWarning’ event handler for executable ‘Script Task’

 This will create a Control Flow surface where you can drop SSIS Control Tasks onto the surface that will
execute if an OnWarning event is thrown from the Script Task you added to the package earlier. Drop a
new Script Task into the Event Handler Control Flow surface and name it OnWarning Script Task. Your
designer should look like Figure 9 - 15 .

c09.indd 325c09.indd 325 8/28/08 12:16:07 PM8/28/08 12:16:07 PM

Chapter 9: Scripting in SSIS

326

Figure 9-15

 To retrieve the information code sent in the Dts.Events.FireWarning method call, add two system -
 level variables System::ErrorCode,System::ErrorDescription to the Read - Only Variables
collection of the OnWarning Script Task. These variables will contain the values of the
 InformationCode and Description parameters in the Dts.Events() methods. You can then retrieve
and evaluate these values when an event is raised by adding the following code:

C#
 long lWarningCode = long.Parse(Dts.Variables[0].Value.ToString());
 String sMsg = string.Empty;
 if(lWarningCode == 1)
 {
 sMsg = String.Format(
 “Would do something with this warning:\n{0}: {1}”,
 lWarningCode.ToString(), Dts.Variables(1).ToString());
 System.Windows.Forms.MessageBox.Show(sMsg);
 }
 Dts.TaskResult = (int)ScriptResults.Success;

VB
 Dim lWarningCode As Long = _
 Long.Parse(Dts.Variables(0).Value.ToString())
 Dim sMsg As String
 If lWarningCode = 1 Then
 sMsg = String.Format(“Would do something with this warning: “ _
 + vbCrLf + “{0}: {1}”, _
 lWarningCode.ToString(), Dts.Variables(1).ToString())
 System.Windows.Forms.MessageBox.Show(sMsg)
 End If
 Dts.TaskResult = ScriptResults.Success

c09.indd 326c09.indd 326 8/28/08 12:16:07 PM8/28/08 12:16:07 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

327

 The code checks the value of the first parameter, which is the value of the System::ErrorCode and the
value raised in the Dts.Events.FireWarning method. If the value is equivalent to one (1), an action is
taken to show a message box. This action could just as well be logging an entry to a database, or sending
an email. If you rerun the package now, you ’ ll see that the first FireWarning event will be handled in
your event handler and generate a message box warning. The second FireWarning event will also be
captured by the event handler, but no response is made. You can see the event handler counter in the
Progress or Execution Results tab is incremented to two (2). Raising events in the Script Tasks are great
ways to get good diagnostic information without resorting to MessageBoxes in your packages. See
Chapter 17 for much more detail about this type of development in SSIS.

 Example: Logging Event Information
 Scripts can also be used to log custom event information. To configure the previous example events
SSIS package to log event information, go to SSIS Logging in the Business Intelligence Designer
Studio. The Configure SSIS Logs dialog will appear. Select “ SSIS log provider for XML files ” in the
Provider Type drop - down and click Add. Click the column named Configuration and then select < New
Connection > from the list to create an XML File Editor. For Usage type, select Create File and specify a
path to a filename similar to c:\ssis\scripts\raisingevents\myLogFile.xml . (This would be
something you ’ d use an expression or package configuration to set during runtime.) Click OK to close
the File Connection Manager Editor dialog box. Your screen should look something like Figure 9 - 16 .

Figure 9-16

 Now click the Package Node to start selecting what tasks in the package should log to the new provider,
and check the box next to the provider name so that the log will be used. In the Details tab, select the
 OnWarning events specifically to log. You can choose to log any of the available event types to the
providers by also selecting them in the Details tab. Now your provider configuration should look like
Figure 9 - 17 .

c09.indd 327c09.indd 327 8/28/08 12:16:09 PM8/28/08 12:16:09 PM

Chapter 9: Scripting in SSIS

328

Figure 9-17

 You can also go to the Advanced tab for each selected event to control exactly what properties of the
event get logged as well. If you run the package again, the file specified in the logging provider will be
created with content similar to the following:

 < record >
 < event > OnWarning < /event >
 < message > This is a warning we want to pay attention to... < /message >
 < computer > MYCOMPUTER < /computer >
 < operator > MYCOMPUTER\ADMIN < /operator >
 < source > Package < /source >
 < sourceid > {D86FF397-6C9B-4AD9-BACF-B4D41AC89ECB} < /sourceid >
 < executionid > {8B6F6392-1818-4EE5-87BF-EDCB5DC37ACB} < /executionid >
 < starttime > 1/22/2008 9:30:08 PM < /starttime >
 < endtime > 1/22/2008 9:30:08 PM < /endtime >
 < datacode > 2 < /datacode >
 < databytes > 0x < /databytes >
 < /record >

 You ’ ll have other events in the file, such as Package Start and Package End, but the preceding code
snippet focuses on the event that your code fired. This record contains the basic information on the event
including the message, event execution time, and the computer and user that raised the event.

 Using the Script Task to raise an event is just one way to get more diagnostic information into your SSIS
log files. Read on to get a brief look at generating simple log entries.

c09.indd 328c09.indd 328 8/28/08 12:16:09 PM8/28/08 12:16:09 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

329

 Writing a Log Entry in a Script Task
 Within a Script Task, the Log method of the Dts object writes a message to all enabled log providers.
The Log method is simple and has but three arguments:

 messageText: The message to log

 dataCode: A field for logging a message code

 dataBytes: A field for logging binary data

 The Log method is similar to the FireInformation method of the Events property, but it is easier to
use and more efficient — you also do not need to create a specialized event handler to respond to the
method call. All you need to do is set up a log provider within the package. In the previous section, you
learned about how to add a log provider to a package. The following code logs a simple message with
some binary data to all available log providers. This is quite useful for troubleshooting and auditing
purposes. You can write out information at important steps in your script and even print out variable
values to help you track down a problem.

 Example: Script a Log Entry
 You can see an example of how to script a log entry by adding a few lines of code to the package in the
previous examples that you used to raise events. First add these lines to the appropriate Script Task that
matches the language you chose in the previous example:

C#
Byte[] myByteArray[] = new byte[0];
Dts.Log(“Called procedure: usp_Upsert with return code 4”, 0, myByteArray);

VB
Dim myByteArray(0) As Byte
Dts.Log(“Called procedure: usp_Upsert with return code 4”, 0, myByteArray)

 Then, select the events for the ScriptTaskLogEntry event in the Details tab of the logging configuration.
This tells the SSIS package logger to expect to log any custom logging instructions like you just
coded. Then run the package. You ’ ll see a set of additional logging instructions that look like this:

 < record >
 < event > User:ScriptTaskLogEntry < /event >
 < message > Called Procedure: usp_Upsert with return code 4 < /message >
 < computer > MYCOMPUTER < /computer >
 < operator > MYCOMPUTER\ADMIN < /operator >
 < source > Raise Events C# Script Task < /source >
 < sourceid > {CE53C1BB-7757-47FF-B173-E6088DA0A2A3} < /sourceid >
 < executionid > {B7828A35-C236-451E-99DE-F679CF808D91} < /executionid >
 < starttime > 4/27/2008 2:54:04 PM < /starttime >
 < endtime > 4/27/2008 2:54:04 PM < /endtime >
 < datacode > 0 < /datacode >
 < databytes > 0x < /databytes >
 < /record >

 As you can see, the Script Task is highly flexible with the introduction of the .NET - based VSTA
capabilities. As far as controlling package flow or one - off activities, the Script Task has clearly taken over

❑

❑

❑

c09.indd 329c09.indd 329 8/28/08 12:16:09 PM8/28/08 12:16:09 PM

Chapter 9: Scripting in SSIS

330

the role of the DTS ActiveX Script Component. However, the Script Task doesn ’ t do all things well. If you
want to apply programmatic logic to data in the data pump portion or Data Flow in an SSIS package,
then you need to continue and add to your knowledge of scripting in SSIS and the Script Component.

 Using the Script Component
 The Script Component provides another area where programming logic can be applied in an SSIS
package. This component can only be used in the Data Flow portion of an SSIS package and allows
programmatic tasks to occur in the data stream. Anything you can do in .NET at a stream level can be
done in this task. Connect to an HTTP Source to create a stream, parse through an existing stream, or
send a stream to a custom destination. This component exists to provide, consume, or transform data
using .NET code. To differentiate the different uses of the Script Component, when you create one you
have to choose one of the following three types:

 Source Type Component: The role of this Script Component is to provide data to your Data
Flow Task. You can define outputs and their types and use script code to populate them. An
example would be reading in a complex file format, possibly XML or something that requires
custom coding to read, like HTTP or RSS Sources.

 Destination Type Component: This type of Script Component consumes data much like an
Excel or Flat File Destination. This component is the end of the line for the data in your data
pump or stream. Here you ’ ll typically put the data into a dataset variable to pass back to the
Control Flow for further processing or send the stream to custom output destinations not
supported in SSIS by a control. Examples of these output destinations can be Web service calls,
custom XML formats, and multi - record formats for mainframe systems. You can even
programmatically connect and send a stream to a printer object.

 Transformation Type Component: This type of Script Component can perform custom
transformations on data. It consumes input columns and produces output columns. You would
use the component when one of the built - in transformations just isn ’ t flexible enough.

 In this section, you ’ ll get up to speed on all the specifics of the Script Component, starting first with an
explanation of the differences between the Script Task and Component and then looking at the coding
differences in the two models. In the end, you ’ ll get an example of each implementation type of the
Script Component to put all of this information to use.

 Differences from a Script Task
 You might ask, “ Why are there two controls for the Script Task and Script Component? ” Well,
underneath the SSIS architecture there are really two different implementations of how the VSTA
environment is used for performance. The Script Task is only going to be called once within a Control
Flow, unless it is in a looping control. The Script Component has to be higher octane because it is going
to be called per row of data in the data stream. You are also in the context of being able to access the data
buffers directly, so there is a slight overhead in learning the differences between these two tasks.

 When you are working with these two controls, the bottom line for you is that there are slightly different
ways of doing the same types of things in each. This section of the chapter cycles back through some of the
things you did with the Script Task and points out the differences. First, let ’ s look at the differences in
configuring the editor, then what changes when performing programmatic tasks such as accessing variables,
using connections, raising events, and logging. Finally, we ’ ll look at an example from an overall perspective.

❑

❑

❑

c09.indd 330c09.indd 330 8/28/08 12:16:10 PM8/28/08 12:16:10 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

331

 Configuring the Script Component Editor
 You ’ ll notice the differences starting with the task editor. Adding a Script Component to the Data Flow
designer brings up the editor shown in Figure 9 - 18 , requesting the component type.

 You must first add a Data Flow Task to a package to be able to add the Script Component.

Figure 9-18

 Selecting one of these choices changes the way the editor displays to configure the control. Essentially,
you are choosing whether the control has input buffers, output buffers, or both. Figure 9 - 19 shows an
example of the transformation Script Control that has both buffers.

Figure 9-19

c09.indd 331c09.indd 331 8/28/08 12:16:10 PM8/28/08 12:16:10 PM

Chapter 9: Scripting in SSIS

332

 In the source version of the Script Component, the input buffers would not be available; the opposite is
true of the destination version. You are responsible for defining these buffers by providing the set of
typed columns for either the input or outputs. If the data is being fed into the component, the editor can
reflect on the stream and set these up for you. Otherwise, you ’ ll have to define them yourself. You can do
this programmatically in the code, or ahead of time using the editor. Just select the input or output
columns collection on the UI, and click the Add Column button to add a column as shown in Figure 9 - 20 .

Figure 9-20

 A helpful tip is to select the Output Columns Node on the tree view, so that the new column gets added
to the bottom of the collection. Once you add a column, you can ’ t move it up or down. Once you add the
column, you ’ ll need to set the Data Type, Length, Precision, and Scale. For details about the SSIS data
types, see Chapter 6 .

 When you access the scripting environment, you ’ ll notice some additional differences between the Script
Component and the Script Task. Namely, that there are some new classes added to the Project Explorer,
as seen in Figure 9 - 21 .

c09.indd 332c09.indd 332 8/28/08 12:16:10 PM8/28/08 12:16:10 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

333

 The class that is used to host custom code is named differently from the Script Task. The class name
changed from ScriptMain to simply being called main . Internally there are also some changes. The
main change is that there is not only one entry point method like there was in the Script Task.
The methods you ’ ll see in the main class depend upon the Script Component type. At least three of the
following methods are typically coded and can be used as entry points in the Script Component:

 PreExecute is used for preprocessing tasks like creating expensive connections or file streams.

 PostExecute is used for cleanup tasks or setting variables at the completion of each
processed row.

 CreateNewOutputRows is the method to manage the output buffers.

 Input0 _ProcessInputRow is the method to manage anything coming from the input buffers.

 The remaining classes are generated automatically based on your input and output columns when you
enter into the script environment, so don ’ t make any changes to these, or they will be overwritten when
you reenter the script environment.

 One inconsistency that can occur within the Script Component Editor and the generation of the
 BufferWrapper class is that you can name columns in the editor that use keywords or are otherwise
invalid when the BufferWrapper class is generated. An example would be an output column named
 125K_AMOUNT . If you create such a column, you ’ ll get an error in the BufferWrapper class stating:

Invalid Token 125 in class, struct, or interface member declaration

 Don ’ t be tempted to change the property in the buffer class to something like _125K_AMOUNT , because
this property will be rebuilt the next time you edit the script. Change the name of the output column
to _125K_AMOUNT , and the buffer class will change automatically. The biggest difference that you need to
pay attention to with the Script Component is that if you make any changes to this editor, you ’ ll need
to open up the Script environment so that all these base classes can be generated.

 Last, but not least, you ’ ll notice a Connections Managers tab that was not available in the Script Task
Editor. This allows you to name specifically the connections that you want to be able to access within the
Script Component. Although it is not required that you name these connections up front, it is extremely
helpful if you do. You ’ ll see why later, when you connect to a Data Source. Figure 9 - 22 shows an example
of an Oracle connection added to a Script Component.

❑

❑

❑

❑

Figure 9-21

c09.indd 333c09.indd 333 8/28/08 12:16:11 PM8/28/08 12:16:11 PM

Chapter 9: Scripting in SSIS

334

 Now that you understand the differences in the Script Task and Component from a setup perspective,
we ’ ll look at how the coding is a little different. We ’ ll start first with how you ’ ll need to access package
variables.

 Accessing Variables in a Script Component
 The same concepts behind accessing variables apply to the Script Component. You can either send the
variables in to the control by adding them to the ReadOnlyVariables or ReadWriteVariables
properties of the editor. You can also choose not to specify them up front and just use the variable
dispenser within your Script Task to access, lock, and manipulate variables within the Script Component.
We ’ d recommend that you use the properties in the editor for this component. The reason why is that the
variables provided in the editor are added to the auto - generated base class variables collection as
strongly typed variables. In this control, adding variables to the editor not only removes the need to lock
and unlock the variables, but you get the added benefit of not having to remember the variable name
within the component. Here ’ s an example of setting the variable VALIDATION_ERRORS within a Script
Component:

C#
this.Variables.VALIDATION_ERRORS = 1;
VB
me.Variables.VALIDATION_ERRORS = 1

 As you can see this is much easier to use because the variable names are available in IntelliSense, and
this is more maintainable because of the checking at compile time. However, if you have instances where
you don ’ t want to have to add a variable to each Script Component task, you can still use the variable
dispenser in this component. It is located on the base class and can be accessed using the base class and

Figure 9-22

c09.indd 334c09.indd 334 8/28/08 12:16:11 PM8/28/08 12:16:11 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

335

not the DTS object. Other than these changes, the variable examples in the Script Task section of this
chapter are still applicable. The remaining tasks of connecting to Data Sources, raising events, and
logging will follow similar patterns. The methods of performing the tasks are more strongly named and
this makes sense because we don ’ t need any late - binding (or runtime type checking) within a high -
 performing Data Stream Task.

 Connecting to Data Sources in a Script Component
 Typically, you ’ ll see connections being used in Source types of the Script Component, because in these
types of Data Flow Tasks, the mission is to create data stream. The origination of that data is usually
another external source. If you had a defined SSIS Source Component, it would be used and you
wouldn ’ t need the Script Component to connect to it.

 In the latest version of SSIS, the coding has been greatly simplified. You can instantiate a specific
Connection Manager and simply assign it the reference to a connection in the component ’ s collection.
Using the connections collection in the Script Component is very similar to the variables collection. The
collection of strongly typed Connection Managers is created every time the script editor is opened.
Again, this is helpful because you don ’ t have to remember the names, and you get compile - time
verification and checking. If you have a package with an OLE DB Connection Manager named
 myOracleServer and add it to the Script Component with the name OracleConnection , you ’ ll have
access to the connection using this code:

C#
ConnectionManagerOleDb oracleConnection =
 (ConnectionManagerOleDb)base.Connections.OracleConnection;

VB
Dim oracleConn as ConnectionManagerOleDb
oracleConn = Connections.OracleConnection

 Raising Events
 For the Script Task, we ’ ve already looked at the ability of SSIS to raise events and demonstrated with
examples, scripting capabilities that manage how the package can respond to these events. These same
capabilities exist in the Script Components, although you do need to consider that Script Components
run in a data pipeline or stream, so the potential for repeated calls is highly likely. You should fire events
sparingly within a Script Component that is generating or processing data in the pipeline to reduce
overhead and increase performance. The methods are essentially the same, but without the static DTS
object. Here is the code to raise an informational event in a Script Component:

C#
Boolean myBool=false;
this.ComponentMetaData.FireInformation(0, “myScriptComponent”,
 “Removed non-ASCII Character”, “”, 0, ref myBool);
VB
Dim myBool As Boolean
Me.ComponentMetaData.FireInformation(0, “myScriptComponent”, _
 “Removed non-ASCII Character”, “”, 0, myBool)

c09.indd 335c09.indd 335 8/28/08 12:16:11 PM8/28/08 12:16:11 PM

Chapter 9: Scripting in SSIS

336

 Either version of code will generate an event in the Progress Tab that looks like this:

[myScriptComponent] Information: Removed non-ASCII Character

 Raising an event is preferred to logging because of the ability to develop a separate workflow for
handling the event, but there are some instances when logging may be preferred. We ’ ll look into logging
for the Script Component in the next section.

 Logging
 Like the Script Task, the logging in the Script Component writes a message to all enabled log providers.
It has the same interface as the Script Task, but it is exposed on the base class. Remember that Script
Components run in a data pipeline or stream, so the potential for repeated calls is highly likely. Follow
the same rules as with raising events and log sparingly within a Script Component that is generating or
processing data in the pipeline to reduce overhead and increase performance. If you need to log a
message within a Data Flow, you can improve performance by logging only in the PostExecute
method, so that the results are only logged once.

 Example: Script a Log Entry
 This example shows how to log one informational entry to the log file providers at the end of a
Data Flow Task. To use this code create a package with a Data Flow Task and add a Script
Component as a source with one output column named NewOutputColumn. Create these integer
variables as private variables to the main.cs class: validationBadChars , validationLength , and
 validationInvalidFormat . Then add this code to the CreateNewOutputRows() method in the
 main.cs class:

C#
 int validationLengthErrors = 0;
 int validationCharErrors = 0;
 int validationFormatErrors = 0;

 //..in the CreateNewOutputRows() Method
 string validationMsg =
 string.Format(“Validation Errors:\nBad Chars {0}\nInvalid Length “ +
 “{1}\nInvalid Format {2}”,
 validationCharErrors, validationLengthErrors,
 validationFormatErrors);
 this.Log(validationMsg, 0, new byte[0]);

 //This is how to add rows to the outputrows Output0Buffer collection.
 Output0Buffer.AddRow();
 Output0Buffer.AddNewOutputColumn = 1;

VB
 Dim validationLengthErrors As Integer = 0
 Dim validationCharErrors As Integer = 0
 Dim validationFormatErrors As Integer = 0

 ‘..in the CreateNewOutputRows() Method
 Dim validationMsg As String
 validationMsg = String.Format(“Validation Errors:” + _

c09.indd 336c09.indd 336 8/28/08 12:16:12 PM8/28/08 12:16:12 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

337

 vbCrLf + “Bad Chars {0}” + _
 vbCrLf + “Invalid Length {1}” + _
 vbCrLf + “Invalid Format {2}”, _
 validationCharErrors, validationLengthErrors, _
 validationFormatErrors)
 Dim myByteArray(0) As Byte
 Me.Log(validationMsg, 0, myByteArray)
 Output0Buffer.AddRow()
 Output0Buffer.AddNewOutputColumn = 1

 For this sample to produce a log entry, remember you will have to set up a logging provider using menu
option SSIS Logging. Make sure you specifically select the Data Flow Task in which the Script
Component is hosted within SSIS and the logging events specifically for the Script Component. Running
the package will produce logging similar to this:

User:ScriptComponentLogEntry,MYPC,MYPC\ADMIN,”CSharp Basic Logging Script
Component” (1),{00000001-0000-0000-0000-000000000000},{3651D743-D7F6-43F8-
8DE2-F7B40423CC28},4/27/2008 10:38:56 PM,4/27/2008 10:38:56 PM,0,0x,
Validation Errors:
Bad Chars 0
Invalid Length 0
Invalid Format 0
OnPipelinePostPrimeOutput, MYPC,MYPC\ADMIN,Data Flow Task,{D2118DFD-DAEE-470B-
9AC3-9B01DFAA993E},{3651D743-D7F6-43F8-8DE2-F7B40423CC28},4/27/2008 10:38:55
PM,4/27/2008 10:38:55 PM,0,0x,A component has returned from its PrimeOutput
call. : 1 : CSharp Basic Logging Script Component

 Example: Data Validation
 The Script Component takes a little longer runway to get up to speed on how to use it and to get a
handle on how it is different from the Script Task. Now it ’ s time to take a look at a more comprehensive
example and get the bigger picture of how this component can be used in your everyday package
development.

 A typical use of the Script Component is to validate data within a Data Flow. In this example, the data is
contact information from a custom application that did not validate data entry, so assume the data
quality is poor. However, the destination database has a strict set of requirements for the data. Your task
is to validate the contact data from the Flat File Source and separate valid from invalid records into two
streams: the good stream and the error stream. The good records can continue to another Data Flow; the
questionable records will be sent to an error table for manual cleansing.

 Create the contacts table with the following script:

CREATE TABLE [dbo].[Contacts](
 [ContactID] [int] IDENTITY(1,1) NOT NULL,
 [FirstName] [varchar](50) NOT NULL,
 [LastName] [varchar](50) NOT NULL,
 [City] [varchar](25) NOT NULL,
 [State] [varchar](15) NOT NULL,
 [Zip] [char](11) NULL
) ON [PRIMARY]

c09.indd 337c09.indd 337 8/28/08 12:16:12 PM8/28/08 12:16:12 PM

Chapter 9: Scripting in SSIS

338

 The error queue table is virtually identical except that here there are no strict requirements and we ’ ve
added a column to capture the rejection reason. All data fields are nullable and set to the maximum
known size:

CREATE TABLE dbo.ContactsErrorQueue
(
 ContactErrorID int NOT NULL IDENTITY (1, 1),
 FirstName varchar(50) NULL,
 LastName varchar(50) NULL,
 City varchar(50) NULL,
 State varchar(50) NULL,
 Zip varchar(50) NULL,
 RejectReason varchar(50) NULL
) ON [PRIMARY]

 Finally, the incoming data format is fixed - width and is defined as follows:

 Field Starting Position New Field Name

 First Name 1 FirstName

 Last Name 11 LastName

 City 26 City

 State 44 State

 Zip 52 Zip

 The data file provided as a test sample looks like this:

Jason Gerard Jacksonville FL 32276-1911
Joseph McClung JACKSONVILLE FLORIDA 322763939
Andrei Ranga Jax fl 32276
Chad Crisostomo Orlando FL 32746
Andrew Ranger Jax fl

 Create a sample of this data file or download a copy from www.wrox.com . Create a new package and add
a Data Flow Task. Click on the Data Flow design surface and add a Connection Manager to the
Connection Managers tab. Name the Connection Manager “ Contacts Mainframe Extract, ” browse to the
data file, and set the file format to Ragged Right. Flat files with spaces at the end of the specifications are
typically difficult to process in some ETL platforms. The Ragged Right option in SSIS provides a way to
handle these easily without having to run the file through a Script Task to put a character into a
consistent spot, or having the origination system reformat their extract files. Use the Columns tab to
visually define the columns. Flip to the Advanced tab to define each of the column names, types, and
widths to match the copy book data definition and the new database field name. (You may need to delete
an unused column if this is added by the designer.) The designer at this point looks like Figure 9 - 23 .

c09.indd 338c09.indd 338 8/28/08 12:16:12 PM8/28/08 12:16:12 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

339

 This data is all string - based, so we are hiding a complexity here. Typically, there is some data that you
may want to define with strong types. Make the decision about whether you want to do that here in the
Connection Manager, or later using a derived column depending upon how confident you are in the
source of the data. If the Data Source is completely unreliable, import data using Unicode strings and use
your Data Flow Tasks to validate the data. Then move good data into a strong data type using the
Derived Column Transform.

 On the Data Flow surface, drag a Flat File Source to the Data Flow editor pane. Edit the Flat File Source
and set the Connection Manager to the Contract Mainframe Extract Connection Manager. This sets up the
origination of the data to stream into the Data Flow Task. Check the box labeled “ Retain null values from
the source as null values in the Data Flow. ” This new feature allows the consistent testing of null values
later. This hiding of null values was one of the problems with earlier versions of SSIS. Now, add a Script
Component to the Data Flow. When you drop the Script Component, you will be prompted to pick the
type of component to create. Select Transformation and click OK. Connect the output of the Flat File
Source to the Script Component to pipe the data into this component where we can program some
validation on the data.

 Open up the Script Component and set the ScriptLanguage to the language of your choice. On the Input
Columns tab, you will notice that Input Name is a drop - down with the name Input 0. It is possible to
have more than one source pointed to this Script Component. If you had this situation, this drop - down
would allow you to individually configure the inputs and select the columns from each input. For this
example, select all the input columns. Set the Usage Type for the State and Zip columns to ReadWrite.
The reason will be clear later.

Figure 9-23

c09.indd 339c09.indd 339 8/28/08 12:16:13 PM8/28/08 12:16:13 PM

Chapter 9: Scripting in SSIS

340

 Select the Inputs and Outputs tab to see the collection of inputs and outputs and the input columns
defined previously. Here you can create additional input and output buffers and columns within each.
Expand all the nodes and add these two output columns:

 Column Name Type Size

 Good Flag DT_BOOL N/A

 RejectReason DT_STR 50

You ’ ll use the flag to separate the data from the data stream. The reject reason will be useful to the
person who ’ ll have to perform any manual work on the data later. The designer with all nodes expanded
should look like Figure 9 - 24 .

Figure 9-24

 Back on the Script tab, click the Edit Script button to enter the VSTA scripting IDE. In the main
class, the rules for validation need to be programmatically applied to each data row. In the Input0_
ProcessInputRow method that was co - generated by SSIS using the Script Component designer, add
the rules for data validation, which are:

c09.indd 340c09.indd 340 8/28/08 12:16:13 PM8/28/08 12:16:13 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

341

 All fields are required except for the zip code.

 The zip code must be in the format ##### - #### or ##### and a numeric digit from 0 through 9. If
the zip code is valid for the first five characters, but the whole string is not, strip the trailing
records and use the first five.

 The state must be two uppercase characters.

 Here ’ s the overall plan: The contents of the file will be sent into the Script Component. This is where
programmatic control will be applied to each row processed. The incoming row has three data fields that
need to be validated to determine that all necessary data is present. The State and Zip columns need to
be validated additionally by rule and even to be cleaned up if possible. The need to fix the data in the
stream is why the Zip and State column usage types had to be set to ReadWrite in the designer earlier.

 To aid in accomplishing these rules, the data will be validated using regular expressions. Regular
expressions are a powerful utility that should be in every developer ’ s tool belt. They allow you to
perform powerful string matching and replacement routines. You can find an excellent tutorial on
regular expressions at http://www.regular - expressions.info . The regular expressions for
matching the data are here:

 Regular Expression Validation Description

 ̂ \d{5}([\ -]\d{4})?$ Matches a five - digit or nine - digit zip code with dash

 \b([A - Z]{2})\b Ensures that the state is only two capital characters

 To use the regular expression library, add the .NET System.Text.RegularExpressions namespace to
the top of the main class. For performance reasons, create the instances of the RegEx class to validate the
 ZipCode and the State in the PreExecute() method of the Script Component. This method and the
private instances of the Regex classes should look like this:

C#
 private Regex zipRegex;
 private Regex stateRegex;
 public override void PreExecute()
 {
 base.PreExecute();
 zipRegex = new Regex(“^\\d{5}([\\-]\\d{4})?$”, RegexOptions.None);
 stateRegex = new Regex(“\\b([A-Z]{2})\\b”, RegexOptions.None);
 }

VB
 Private zipRegex As Regex
 Private stateRegex As Regex

 Public Overrides Sub PreExecute()
 MyBase.PreExecute()
 zipRegex = New Regex(“^\d{5}([\-]\d{4})?$”, RegexOptions.None)
 stateRegex = New Regex(“\b([A-Z]{2})\b”, RegexOptions.None)
 End Sub

❑

❑

❑

c09.indd 341c09.indd 341 8/28/08 12:16:13 PM8/28/08 12:16:13 PM

Chapter 9: Scripting in SSIS

342

 To break up the tasks, create two new private functions to validate the ZipCode and State . Using byRef
arguments for the reason and the ZipCode enables the data to be cleaned and the encapsulated logic to
return both a true/false as well as the reason. The ZipCode validation functions should look like this:

C#
private bool ZipIsValid(ref string zip, ref string reason)
 {
 zip = zip.Trim();
 if (zipRegex.IsMatch(zip))
 {
 return true;
 }
 else
 {
 if (zip.Length > 5)
 {
 zip = zip.Substring(0, 5);
 if (zipRegex.IsMatch(zip))
 {
 return true;
 }
 else
 {
 reason = “Zip larger than 5 Chars, “ +
 “Retested at 5 Chars and Failed”;
 return false;
 }
 }
 else
 {
 reason = “Zip Failed Initial Format Rule”;
 return false;
 }
 }
 }

VB
 Private Function ZipIsValid(ByRef zip As String, _
 ByRef reason As String) As Boolean
 zip = zip.Trim()
 If (zipRegex.IsMatch(zip)) Then
 Return True
 Else
 If (zip.Length > 5) Then
 zip = zip.Substring(0, 5)
 If (zipRegex.IsMatch(zip)) Then
 Return True
 Else
 reason = “Zip larger than 5 Chars, “ + _
 “Retested at 5 Chars and Failed”
 Return False
 End If
 Else

c09.indd 342c09.indd 342 8/28/08 12:16:14 PM8/28/08 12:16:14 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

343

 reason = “Zip Failed Initial Format Rule”
 Return False
 End If
 End If
 End Function

 The state validation functions look like this:

C#
 private bool StateIsValid(ref string state, ref string reason)
 {
 state = state.Trim().ToUpper();
 if (stateRegex.IsMatch(state))
 {
 return true;
 }
 else
 {
 reason = “Failed State Validation”;
 return false;
 }
 }

VB
 Private Function StateIsValid(ByRef state As String, _
 ByRef reason As String) As Boolean
 state = state.Trim().ToUpper()
 If (stateRegex.IsMatch(state)) Then
 Return True
 Else
 reason = “Failed State Validation”
 Return False
 End If
 End Function

 Now, to put it all together add the driver method Input0_ProcessInputRow() that is fired upon each
row of the flat file:

C#
 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {
 Row.GoodFlag = false;
 string myZip = string.Empty;
 string myState = string.Empty;
 string reason = string.Empty;

 if (!Row.FirstName_IsNull & & !Row.LastName_IsNull & &
 !Row.City_IsNull & & !Row.State_IsNull & & !Row.Zip_IsNull)
 {
 myZip = Row.Zip;
 myState = Row.State;
 if (ZipIsValid(ref myZip, ref reason) & &
 StateIsValid(ref myState, ref reason))

c09.indd 343c09.indd 343 8/28/08 12:16:14 PM8/28/08 12:16:14 PM

Chapter 9: Scripting in SSIS

344

 {
 Row.Zip = myZip;
 Row.State = myState;
 Row.GoodFlag = true;
 }
 else
 {
 Row.RejectReason = reason;
 }
 }
 else
 {
 Row.RejectReason = “All Required Fields not completed”;
 }
 }

VB
 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 Dim myZip As String = String.Empty
 Dim myState As String = String.Empty
 Dim reason As String = String.Empty

 If (Row.FirstName_IsNull = False And _
 Row.LastName_IsNull = False And _
 Row.City_IsNull = False And _
 Row.State_IsNull = False And _
 Row.Zip_IsNull = False) Then
 myZip = Row.Zip
 myState = Row.State
 If (ZipIsValid(myZip, reason) And _
 StateIsValid(myState, reason)) Then
 Row.Zip = myZip
 Row.State = myState
 Row.GoodFlag = True
 Else
 Row.RejectReason = reason
 End If
 Else
 Row.RejectReason = “All Required Fields not completed”
 End If
 End Sub

 Notice that all fields are checked for null values using a property on the Row class that is the field name
and an additional tag _IsNull . This is a property code generated by SSIS when you set up the input and
output columns on the Script Component. Properties like Zip_IsNull explicitly allow the checking of a
null value without encountering a Null Exception. This is handy as the property returns true if the
particular column is NULL.

 Next, if the Zip column is not NULL, its value is matched against the regular expression to see if it ’ s in
the correct format. If it is, the value is assigned back to the Zip column as a cleaned data element. If the
value of the Zip column doesn ’ t match the regular expression, the script checks to see if it is at least five

c09.indd 344c09.indd 344 8/28/08 12:16:14 PM8/28/08 12:16:14 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

345

characters long. If true, then the first five characters are retested for a valid ZipCode pattern. Non -
 matching values result in a GoodFlag in the output columns being set to False .

 The state is trimmed of any leading or trailing white space, and then converted to uppercase and
matched against the regular expression. The expression simply checks to see if it ’ s two uppercase letters
between A and Z. If it is, the GoodFlag is set to True and the state value is updated; otherwise, the
GoodFlag is set to False .

 To send the data to the appropriate table based on the GoodFlag, you must use the Conditional
Split Task. Add this task to the Data Flow designer and connect the output of the Script Component Task
to the Conditional Split Transformation. Edit the Conditional Split Transformation, and add an output
named Good with the condition GoodFlag == FALSE and another output named Bad with the condition
 GoodFlag == TRUE . This separates the data rows coming out of the Script Component Task into two
separate streams. Another way to do this is only define one stream and let the default stream be the
other condition, but it seems more explicit to create streams for both conditions. The Conditional Split
Transform Editor should look like Figure 9 - 25 .

Figure 9-25

 Add an OLE Connection Manager that uses the database you created for the Contacts and
ContactsErrorQueue tables. Add two SQL Server Destinations to the Data Flow designer. One, named
Good Destination, should point to the Contacts table; the other, to the ContactsErrorQueue table. Drag
the Good output of the Conditional Split Task to the Good Destination. Set the output stream named

c09.indd 345c09.indd 345 8/28/08 12:16:15 PM8/28/08 12:16:15 PM

Chapter 9: Scripting in SSIS

346

Good to the destination. Then open the Mappings tab in the destination to map the input stream to the
columns in the Contacts table. Repeat this for the other Bad output of the Conditional Split Task to the
Bad Destination.

 Your final Data Flow should look something like Figure 9 - 26 . If you run this package with the
 Contacts.dat file described at the top of the use - case, three contacts will validate, and two will fail
with these rejection reasons:

Failed State Validation
Joseph McClung JACKSONVILLE FLORIDA 322763939

Zip Failed Initial Format Rule
Andrew Ranger Jax fl

Figure 9-26

 At this point, you ’ ve gotten a good overview of how scripting works in SSIS and the difference between
the Script Task and the Scripting Component, but as with any programming environment, you need to
know how to troubleshoot and debug your code to get all of this to work. We ’ ll look at some of the
common coding tasks in the next section that you ’ ll need to allow for more advanced SSIS scripting
development.

c09.indd 346c09.indd 346 8/28/08 12:16:16 PM8/28/08 12:16:16 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

347

 Essential Coding, Debugging, and
Troubleshooting Techniques

 We have been all over the new VSTA development environment and have introduced you to the addition
of C# that moves SSIS development into the managed code arena. Now, we need to circle up and dig into
some of the techniques of hardening our code for unexpected issues that occur during runtime and look
at some of the techniques of troubleshooting SSIS packages. There are some differences between the
Script Task and the Script Component for some of these techniques that we ’ ll highlight here, now that
you are familiar with both.

 Structured Exception Handling
 Structured Exception Handling (SEH) allows you to catch specific errors as they occur and perform any
appropriate action needed. In many cases, you just want to log the error and stop execution, but there
are some instances where you may want to try a different plan of action, depending on the error.

 Here is an example of exception handling in SSIS scripting code in both languages:

C#
public void Main()
{
 try
 {
 string fileText = string.Empty;
 fileText = System.IO.File.ReadAllText(“c:\\data.csv”);
 }
 catch (System.IO.FileNotFoundException ex)
 {
 //Log Error Here
 //MessageBox here for demo purposes only
 System.Windows.Forms.MessageBox.Show(ex.ToString());
 Dts.TaskResult = (int)ScriptResults.Failure;
 }
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Try
 Dim fileText As String
 fileText = FileIO.FileSystem.ReadAllText(“C:\data.csv”)
 Catch ex As System.IO.FileNotFoundException
 ‘Log Error Here
 ‘MessageBox here for demo purposes only
 System.Windows.Forms.MessageBox.Show(ex.ToString())
 Dts.TaskResult = ScriptResults.Failure
 Return
 End Try
 Dts.TaskResult = ScriptResults.Success
End Sub

c09.indd 347c09.indd 347 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Chapter 9: Scripting in SSIS

348

 This trivial example attempts to read the contents of the file at C:\data.csv into a string variable. This
code makes some assumptions that might not be true. An obvious assumption is that the file exists. That
is why this code was placed in a Try block. It is trying to perform an action that has the potential for
failure. If the file isn ’ t there, a System.IO.FileNotFoundException is thrown. A Try block marks a
section of code that contains function calls with potentially known exceptions. In this case, the
 FileSystem ReadAllText function has the potential to throw a concrete exception.

 The Catch block is the error handler for this specific exception. You would probably want to add some
code to log the error inside the Catch block. For now, we ’ ve sent the exception to the message box as a
string so that it can be viewed. See later in the chapter under each Script object type for the method to
perform logging of this type. This code obviously originates from a Scripting Task since it returns a result.
The result is set to Failure , and the script is exited with the Return statement if the exception occurs.
If the file is found, no exception is thrown, and the next line of code is executed. In this case, it would go
to the line that sets the TaskResult to the value of the Success enum, right after the End Try statement.

 If an exception is not caught, the exception propagates up the call stack until an appropriate handler is
found. If none is found, the exception stops execution. You can have as many Catch blocks associated
with a Try block as you wish. When an exception is raised, the Catch blocks are walked from top to
bottom until an appropriate one is found that fits the context of the exception. Only the first block that
matches will be executed. Execution does not fall through to the next block, so it ’ s important to place the
most specific Catch block first and descend to the least specific. A Catch block specified with no filter
will catch all exceptions. Typically, the coarsest Catch block is listed last. The previous code was written
to anticipate the error of a file not being found, so not only does the developer have an opportunity to
add some recovery code, but the framework assumes that you ’ ll handle the details of the error itself. If the
same code only contained a generic Catch statement, the error would simply be written to the package
output. To see what this looks like replace the Catch statement in the preceding code snippet with these:

C#
Catch()

VB
Catch

 Then the error would simply be written to the package output like this:

SSIS package “Package.dtsx” starting.
Error: 0x1 at VB Script Task: System.Reflection.TargetInvocationException,
mscorlib
System.IO.FileNotFoundException, mscorlib

System.Reflection.TargetInvocationException: Exception has been thrown by the
target of an invocation. --- > System.IO.FileNotFoundException: Could not find
file ‘C:\data.csv’.
File name: ‘C:\data.csv’
 at System.IO.__Error.WinIOError(Int32 errorCode, String maybeFullPath)
 at System.IO.FileStream.Init(String path, FileMode mode, FileAccess access,
Int32 rights, Boolean useRights, FileShare share, Int32 bufferSize,
FileOptions options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean
bFromProxy)
 …
Task failed: VB Script Task
SSIS package “Package.dtsx” finished: Success.

c09.indd 348c09.indd 348 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

349

 The full stack is cut off for brevity and to point out that the task status shows that it failed.

 Another feature of SEH is the Finally block. The Finally block exists inside a Try block and executes
after any code in the Try block and any Catch blocks that were entered. Code in the Finally block is
always executed, regardless of what happens in the Try block and in any Catch blocks. You would put
code to dispose of any resources, such as open files or database connections, in the Finally block.
Following is an example of using the Finally block to free up a connection resource:

C#
public void OpenConnection(string myConStr)
{
 SqlConnection con = new SqlConnection(myConStr);
 try
 {
 con.Open();
 //do stuff with con
 }
 catch (SqlException ex)
 {
 //log error here
 }
 finally
 {
 if (con != null)
 {
 con.Dispose();
 }
 }
}

VB
Public Sub OpenConnection(myConStr as String)
 Dim con As SqlConnection = New SqlConnection(myConStr)
 Try
 con.Open()
 ‘do stuff with con
 Catch ex As SqlException
 ‘Log Error Here
 Dts.TaskResult = Dts.Results.Failure
 Return
 Finally
 If Not con Is Nothing Then con.Dispose()
 End Try
End Sub

 In this example, the Finally block is hit regardless of whether the connection is open or not. A logical
 If statement checks to see if the connection is open and closes it to conserve resources. Typically you
want to follow this pattern if you are doing anything resource intensive like using the System.IO or
 System.Data assemblies.

 For a full explanation of the Try/Catch/Finally structure in Visual Basic.NET, see the language reference
in MSDN or Books Online.

c09.indd 349c09.indd 349 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Chapter 9: Scripting in SSIS

350

 Script Debugging and Troubleshooting
 Debugging is an important new feature of scripting in SSIS. You can still use the technique of popping
up a message box function to see the value of variables, but there are more sophisticated techniques that
will help you pinpoint the problem. Using the Visual Studio for Applications environment, you now
have the ability to set breakpoints, examine variables, and even evaluate expressions interactively.

 Breakpoints
 Breakpoints allow you to flag a line of code where execution pauses while debugging. Breakpoints are
invaluable in determining what ’ s going on inside your code. They allow you to step into your code and
see what happens as it executes. Unfortunately, breakpoints only work inside of Script Tasks.

 You can set a breakpoint in several ways. One way is to click in the gray margin at the left of the text
editor at the line where you wish to stop execution. Another way is to move the cursor to the line you
wish to break on and hit F9. Yet another way is to select Debug Toggle Breakpoint.

 To continue execution from a breakpoint, press F10 to step to the next line or F5 to run all the way
through to the next breakpoint.

 When you have a breakpoint set on a line, the line gets a red highlight like the one shown in Figure 9 - 27 .

Figure 9-27

 When a Script Task has a breakpoint set somewhere in the code, it will have a red dot on it similar to the
one in Figure 9 - 28 .

Figure 9-28

 Row Count and Data Viewers
 Previously, you looked at using the Visual Studio for Applications environment to debug a Script Task
using breakpoints and other tools. Unfortunately, you do not have the ability to debug the Script
Component using this environment. Any breakpoints that you set will be ignored. Instead, you must
resort to inspecting the data stream using the Row Count Component or a Data Viewer.

 The Row Count Component is very straightforward; it simply states how many rows passed through
it. The Data Viewer is a much better way to debug your component, however. To add a Data Viewer,
select the connector arrow, leaving the component that you want to see data for. In the previous example,
this would be the connector from the Script Component to the Conditional Split Task. Right - click this
connection and select Data Viewers. The Data Flow Path Editor will pop up. Click Add to add the Data
Viewer. On the Configure Data Viewer screen, select Grid as the type. Click the Grid tab and make sure
all the columns you wish to see are in the Displayed Columns list. Close out this window and the
Data Path Flow Editor window by clicking OK. Figure 9 - 29 shows the Data Path Flow Editor with a Data
Viewer configured on Output 0.

c09.indd 350c09.indd 350 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

351

 Now when you run this package again, you will get a Data Viewer window after the Script Component
has executed. This view will show the data output by the Script Component. Figure 9 - 30 shows an
example. Click the Play button to continue package execution, or simply close the window.

Figure 9-29

Figure 9-30

 While using the Data Viewer certainly helps with debugging, it is no replacement for being able to step
into the code. An alternative is to use the FireInformation event on the ComponentMetaData class in
the Script Component. It is like the message box, but without the modal effect.

 Autos, Locals, and Watches
 The Visual Studio environment provides you with some powerful views into what is happening with the
execution of your code. These views consist of three windows known as the Autos window, Locals
window, and Watch window. These windows share a similar layout and display the value of expressions
and variables, though each has a distinct method determining what data to display.

c09.indd 351c09.indd 351 8/28/08 12:16:19 PM8/28/08 12:16:19 PM

Chapter 9: Scripting in SSIS

352

 The Locals window displays variables that are local to the current statement, as well as three statements
behind and in front of the current statement. For a running example, the Locals window would appear,
as in Figure 9 - 31 .

Figure 9-31

 Watches are another very important feature of debugging. Watches allow you to specify a variable to
watch. You can set up a watch to break execution when a variable ’ s value changes or some other
condition is met. This will allow you to see exactly when something is happening, such as a variable that
has an unexpected value.

 To add a watch, select the variable you want to watch inside the script, right - click it, and select Add
Watch. This will add an entry to the Watch window.

 You can also use the Quick Watch window, accessible from the Debug menu, or through the Ctrl+Alt+Q
key combination. The Quick Watch window is shown in Figure 9 - 32 in the middle of a breakpoint, and
you can see the value of ival as it is being assigned the variable value of 2.

Figure 9-32

c09.indd 352c09.indd 352 8/28/08 12:16:19 PM8/28/08 12:16:19 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

Chapter 9: Scripting in SSIS

353

 This window allows you to evaluate an expression at runtime and see the result in the window. You can
then click the Add Watch button to move it to the Watch window.

 The Immediate Window
 The Immediate window allows you to evaluate expressions, execute procedures, and print out variable
values. It is really a mode of the Command window, which allows you to issue commands to the IDE.
Unfortunately, this too is only useful when you are within a breakpoint and this can only be done within
a Script Task.

 If you can ’ t find the Immediate window, but see the Command window, just type the command immed
and press Enter.

 The Immediate window is very useful while testing. You can see the outcome of several different
scenarios. Suppose you have an object obj of type MyType . MyType declares a method called
 DoMyStuff() that takes a single integer as an argument. Using the Immediate window, you could pass
different values into the DoMyStuff() method and see the results. To evaluate an expression in the
Immediate window and see its results, you must start the command with a question mark (?):

?obj.DoMyStuff(2)
“Hello”

 Commands are terminated by pressing the Enter key. The results of the execution are printed on the next
line. In this case, calling DoMyStuff() with a value of 2 returns the string “ Hello. ”

 You can also use the Immediate window to change the value of variables. If you have a variable defined
in your script and you want to change its value, perhaps for negative error testing, you can use this
window, as shown in Figure 9 - 33 .

Figure 9-33

 In this case, the value of the variable greeting is printed out on the line directly below the expression.
After the value is printed, it is changed to “ Goodbye Cruel World. ” The value is then queried again, and
the new value is printed. If you are in a Script Task and need to get additional information, this is a
useful way to do it.

 Summary
 In this chapter, you learned about the available scripting options in SSIS from the beginning with DTS
and the use of ActiveX scripts to the new versions of SSIS that support managed code development and
a robust IDE development environment. You used the new Visual Studio Tools for Applications IDE to

c09.indd 353c09.indd 353 8/28/08 12:16:20 PM8/28/08 12:16:20 PM

Chapter 9: Scripting in SSIS

354

develop some basic Script Tasks. Then, to see how all this fits together in SSIS, we dove right in to using
the Script Tasks to retrieve data into variables, save data into external XML files, and used some .NET
serialization techniques that can allow custom serialization into MSMQ queues or Web services. To
understand how to leverage existing code libraries, you even created a utility class, registered it into the
GAC, and accessed it in an SSIS script to validate data.

 SSIS scripting is powerful, but it has been difficult for some to differentiate between when to use a Script
Task and when a Script Component is appropriate. You have been all over both of these in detail in this
chapter and can now use these with confidence in your daily development.

 Experiment with the scripting features of SSIS using the examples in this chapter, and you will find all
kinds of uses for them. Don ’ t forget to review the chapter on expressions to learn about the capabilities of
controlling properties within the SSIS model at runtime. Now we are going to take what we ’ ve learned so
far about the SSIS toolset capability from Control Flow and Data Flow Tasks, to Expressions and Scripting
Tasks and Components and put them to work. Read on to the next chapter for a breakdown on the
techniques you need to do a typical job of loading a data warehouse using SSIS services.

c09.indd 354c09.indd 354 8/28/08 12:16:20 PM8/28/08 12:16:20 PM

Excerpted from Professional Microsoft SQL Server 2008 Integration Services
ISBN: 978-0-470-24795-2, Wrox Press, Posted by Permission

